Skip to main content
Log in

Intramembrane congestion effects on lysenin channel voltage-induced gating

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

All cell membranes are packed with proteins. The ability to investigate the regulatory mechanisms of protein channels in experimental conditions mimicking their congested native environment is crucial for understanding the environmental physicochemical cues that may fundamentally contribute to their functionality in natural membranes. Here we report on investigations of the voltage-induced gating of lysenin channels in congested conditions experimentally achieved by increasing the number of channels inserted into planar lipid membranes. Typical electrophysiology measurements reveal congestion-induced changes to the voltage-induced gating, manifested as a significant reduction of the response to external voltage stimuli. Furthermore, we demonstrate a similar diminished voltage sensitivity for smaller populations of channels by reducing the amount of sphingomyelin in the membrane. Given lysenin’s preference for targeting lipid rafts, this result indicates the potential role of the heterogeneous organization of the membrane in modulating channel functionality. Our work indicates that local congestion within membranes may alter the energy landscape and the kinetics of conformational changes of lysenin channels in response to voltage stimuli. This level of understanding may be extended to better characterize the role of the specific membrane environment in modulating the biological functionality of protein channels in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abe M, Kobayashi T (2014) Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy. BBA-Mol Cell Biol L 1841:720–726

    CAS  Google Scholar 

  • Aisenbrey C, Bechinger B, Grobner G (2008) Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. J Mol Biol 375:376–385

    Article  CAS  PubMed  Google Scholar 

  • Barfod ET, Moore AL, Roe MW, Lidofsky SD (2007) Ca2+-activated IK1 channels associate with lipid rafts upon cell swelling and mediate volume recovery. J Biol Chem 282:8984–8993

    Article  CAS  PubMed  Google Scholar 

  • Bezanilla F (2005) Voltage-gated ion channels. IEEE T Nanobiosci 4:34-48

  • Bezanilla F (2008) Ion channels: from conductance to structure. Neuron 60:456–468

    Article  CAS  PubMed  Google Scholar 

  • Brady JD, Rich TC, Le X, Stafford K, Fowler CJ, Lynch L, Karpen JW, Brown RL, Martens JR (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol Pharmacol 65:503–511

    Article  CAS  PubMed  Google Scholar 

  • Dan N, Pincus P, Safran SA (1993) Membrane-induced interactions between inclusions. Langmuir 9:2768–2771

    Article  CAS  Google Scholar 

  • de Planque MRR, Killian JA (2003) Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol Membr Biol 20:271–284

    Article  PubMed  Google Scholar 

  • Dekker JP, Yellen G (2006) Cooperative gating between single HCN pacemaker channels. J Gen Physiol 128:561–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001) Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci USA 98:10642–10647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci USA 105:2848–2852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erdem R, Aydiner E (2009) Monte Carlo simulation for statistical mechanics model of ion-channel cooperativity in cell membranes. Phys Rev E 79:031919

    Article  Google Scholar 

  • Fologea D, Krueger E, Lee R, Naglak M, Mazur Y, Henry R, Salamo G (2010) Controlled gating of lysenin pores. Biophys Chem 146:25–29

    Article  CAS  PubMed  Google Scholar 

  • Fologea D, Al Faori R, Krueger E, Mazur YI, Kern M, Williams M, Mortazavi A, Henry R, Salamo GJ (2011a) Potential analytical applications of lysenin channels for detection of multivalent ions. Anal Bioanal Chem 401:1871–1879

    Article  CAS  PubMed  Google Scholar 

  • Fologea D, Krueger E, Mazur YI, Stith C, Okuyama Y, Henry R, Salamo GJ (2011b) Bi-stability, hysteresis, and memory of voltage-gated lysenin channels. BBA-Biomembr 1808:2933–2939

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Ide T, Aoki T, Takeuchi Y, Yanagida T (2006) Lysenin forms a voltage-dependent channel in artificial lipid bilayer membranes. Biochem Biophys Res Co 346:288–292

    Article  CAS  Google Scholar 

  • Ishitsuka R, Kobayashi T (2004) Lysenin: a new tool for investigating membrane lipid organization. Anat Sci Int 79:184–190

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka R, Kobayashi T (2007) Cholesterol and lipid/protein ratio control the oligomerization of a sphingomyelin-specific toxin, lysenin. Biochemistry 46:1495–1502

    Article  CAS  PubMed  Google Scholar 

  • Jin Z-X, Huang C-R, Dong L, Goda S, Kawanami T, Sawaki T, Sakai T, Tong X-P, Masaki Y, Fukushima T, Tanaka M, Mimori T, Tojo H, Bloom ET, Okazaki T, Umehara H (2008) Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells. Int Immunol 20:1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Keleshian AM, Edeson RO, Liu G-J, Madsen BW (2000) Evidence for cooperativity between nicotinic acetylcholine receptors in patch clamp records. Biophys J 78:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kulma M, Herec M, Grudzinski W, Anderluh G, Gruszecki WI, Kwiatkowska K, Sobota A (2010) Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies. BBA-Biomembr 1798:471–481

    Article  CAS  Google Scholar 

  • Kwiatkowska K, Hordejuk R, Szymczyk P, Kulma M, Abdel-Shakor A-B, Plucienniczak A, Dolowy K, Szewczyk A, Sobota A (2007) Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding. Mol Membr Biol 24:121–134

    Article  CAS  PubMed  Google Scholar 

  • Latorre R, Vargas G, Orta G, Brauchi S (2007) Voltage and temperature gating of ThermoTRP channels. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC Press/Taylor & Francis, Boca Raton (FL), Chapter 21

    Google Scholar 

  • Linden M, Sens P, Phillips R (2012) Entropic tension in crowded membranes. PLoS Comput Biol 8:e1002431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Maguy A, Hebert TE, Nattel S (2006) Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res 69:798–807

    Article  CAS  PubMed  Google Scholar 

  • Mitsutake S, Zama K, Yokota H, Yoshida T, Tanaka M, Mitsui M, Ikawa M, Okabe M, Tanaka Y, Yamashita T, Takemoto H, Okasaki T, Watanabe K, Igarashi Y (2011) Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. J Biol Chem 286:28544–28555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  CAS  PubMed  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pike LJ, Han X, Chung KN, Gross RW (2002) Lipid Rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression; a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–2088

    Article  CAS  PubMed  Google Scholar 

  • Reeves D, Ursell T, Sens P, Kondev J, Phillips R (2008) Membrane mechanics as a probe of ion-channel gating mechanisms. Phys Rev E 78:041901

    Article  Google Scholar 

  • Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ursell T, Huang KC, Peterson E, Phillips R (2007) Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol 3:e81

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaji A, Sekizawa Y, Emoto K, Sakuraba H, Inoue K, Kobayashi H, Umeda M (1998) Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 273:5300–5306

    Article  CAS  PubMed  Google Scholar 

  • Yamaji-Hasegawa A, Makino A, Baba T, Senoh Y, Kimura-Suda H, Sato S, Terada N, Ohno S, Kiyokawa E, Umeda M, Kobayashi T (2003) Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 278:22762–22770

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz N, Kobayashi T (2015) Visualization of lipid membrane reorganization induced by a pore-forming toxin using high-speed atomic force microscopy. ACS Nano 9:7960–7967

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz N, Yamada T, Greimel P, Uchihashi T, Ando T, Kobayashi T (2013) Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. Biophys J 105:1397–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H-X (2009) Crowding effects of membrane proteins. J Phys Chem B 113:7995–8005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was partially supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM109095. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. EK and SB contributed equally to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fologea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krueger, E., Bryant, S., Shrestha, N. et al. Intramembrane congestion effects on lysenin channel voltage-induced gating. Eur Biophys J 45, 187–194 (2016). https://doi.org/10.1007/s00249-015-1104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1104-z

Keywords

Navigation