Skip to main content
Log in

Biogeography Revealed by Mariner-Like Transposable Element Sequences via a Bayesian Coalescent Approach

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity of natural populations is useful in biogeographical studies. Here, we apply a Bayesian method based on the coalescent model to dating biogeographical events by using published DNA sequences of wild silkworms, Bombyx mandarina, and the domesticated model organisms B. mori, both of which categorized into the order of Lepidoptera, sampled from China, Korea, and Japan. The sequences consist of the BmTNML locus and the flanking intergenic regions. The BmTNML locus is composed of cecropia-type mariner-like element (MLE) with inverted terminal repeats, and three different transposable elements (TE), including L1BM, BMC1 retrotransposons, and BmamaT1, are inserted into the MLE. Based on the genealogy defined by TE insertions/deletions (indels), we estimated times to the most recent common ancestor and these indels events using the flanking, MLE, and indels sequences, respectively. These estimates by using MLE sequences strongly correlated with those by using flanking sequences, implying that cecropia-type MLEs can be used as a molecular clock. MLEs are thought to have transmitted horizontally among different species. By using a pair of published cecropia-type MLE sequences from lepidopteran insect, an emperor moth, and a coral in Ryukyu Islands, we demonstrated dating of horizontal transmission between species which are distantly related but inhabiting geographically close region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Avise JC, Nelson WS (1989) Molecular genetic relationships of the extinct dusky seaside sparrow. Science 243:646–648

    Article  CAS  PubMed  Google Scholar 

  • Baker CS, Perry A, Bennister JL, Weinrich MT, Abernethy RB, Calambokidis J, Liens J, Lambertsen RH, Urbán Ramírez J, Vasquezj O, Clapham PJ, Alling A, O’Brien S, Palumbi SR (1993) Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc Natl Acad Sci USA 90:8239–8243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bui QT, Casse N, Leignel V, Nicolas V, Chenais B (2008) Widespread occurence of mariner transposons in coastal crabs. Mol Phylogenet Evol 47:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M (2006) Species sympatry and horizontal transfers of mariner transposons in marine crustacean genomes. Mol Phylogenet Evol 40:609–619

    Article  CAS  PubMed  Google Scholar 

  • Charruau P, Fernandes PC, Orozco-Terwengel P, Peters J, Hunter L, Ziaie H, Jourabchian A, Jowkar H, Schaller G, Ostowski S, Vercammen P, Grange T, Schlötterer C, Kotze A, Geigl E-M, Walzer C, Burger PA (2011) Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: evidence for long-term geographic isolates. Mol Ecol 20:706–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, Geffen E, Harley EH, Delibes M, Pontier D, Kitchener AC, Yamaguchi N, O’brien SJ, Macdonald DW (2007) The near eastern origin of cat domestication. Science 317:519–523

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Hartl DL (2001) Discovery of the transposable element mariner. Genetics 157:471–476

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR (1997) What restricts the activity of mariner-like transposable elements. Trends Genet 13:197–201

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR (1983) Properties of a neutral allele model with intragenic recombination. Theor Popul Biol 23:183–201

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi Y, Takaishi R, Banno Y, Fujimoto H, Nho SK, Maekawa H, Nakajima Y (2007) Sequence comparison of mariner-like elements among the populations of Bombyx mandarina inhabiting China, Korea and Japan. J Insect Biotechnol Sericol 76(2):79–87

    CAS  Google Scholar 

  • Kawanishi Y, Takaishi R, Morimoto M, Banno Y, Kab Nho S, Maekawa H, Nakajima Y (2008) A novel maT-type transposable element, BmamaT1, in Bombyx mandarina, homologous to the B. mori mariner-like element Bmmar6. J Insect Biotechnol Sericol 77:45–52

    CAS  Google Scholar 

  • Kingman JFC (1982) On the genealogy of large populations. J Appl Probability 19:27–43

    Article  Google Scholar 

  • Kumaresan G, Mathavan S (2004) Molecular diversity and phylogenetic analysis of mariner-like transposons in the genome of the silkworm Bombyx mori. Insect Mol Biol 13(3):249–271

    Article  Google Scholar 

  • Li D, Guo Y, Shao H, Tellier LD, Wang J, Xiang Z, Xia Q (2010) Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol Biol 10:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Lidholm DA, Gudmundsson GH, Boman HG (1991) A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J Biol Chem 266(18):11518–11521

    CAS  PubMed  Google Scholar 

  • Maruyama K, Hartl DL (1991) Evolution of the transposable element mariner in Drosophila species. Genetics 128:319–329

    PubMed Central  CAS  PubMed  Google Scholar 

  • MinHui P, QuanYou Y, YuLing X, YanQun L, Cheng L, Zhang Z, Xiang ZH (2008) Characterization of mitochondrial genome of Chinese wild mulberry slikworm, Bomyx mandarina (Lepidoptera: Bombycidae). Sci China Ser C 51:693–701

    Google Scholar 

  • Nakajima Y, Hashido K, Tsuchida K, Takada N, Shiino T, Maekawa H (1999) A novel tripartite structure comprising a mariner-like element and two additional retrotransposons found in the Bombyx mori genome. J Mol Evol 48:577–585

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Fujimoto H, Negishi T, Hashido K, Shiino T, Tsuchida K, Hidaka M, Takada N, Maekawa H (2002) Possible horizontal transfer of mariner-like sequences into some invertaberates including Lepidopteran insects, a grasshopper and a coral. J Insect Biotechnol Sericol 71:109–121

    CAS  Google Scholar 

  • Ripley BD (1987) Stochastic simulation. Wiley, New York

    Book  Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Lampe DJ (1995) Distribution of transposable elements in arthropods. Annu Rev Entomol 40:333–357

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the mediterranean fruit fly, and related arthropods. Insect Mol Biol 2:125–139

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Rannala B (1997) Estimating the age of alleles by use of intra-allelic variability. Am J Hum Genet 60:447–458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    CAS  PubMed  Google Scholar 

  • Tavaré S (2004) Ancestral inference in population genetics. In: Lectures on probability theory and statistics, Ecolde d’Eté de Probabilités de Saint-Flour XXXI-2001. Springer, Heidelberg

  • Tavaré S, Balding DJ, Griffiths RC, Donnely P (1997) Inferring coalescence times from DNA sequence data. Genetics 145:505–518

    PubMed Central  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Xiang ZH, Huang JT, Xia JG, Lu C (2005) Biology and sericulture. China For Publ House, Beijing

    Google Scholar 

  • Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y (2002) Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 19(8):1385–1389

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evoluving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Hideaki Maekawa and Yuichi Kawanishi for their helpful discussions and comments to this study. S.N. has been supported in part by a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) Research fellow (24-3234). Y.N. and S.M. has been supported by KAKENHI 19658023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Mano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagome, S., Nakajima, Y. & Mano, S. Biogeography Revealed by Mariner-Like Transposable Element Sequences via a Bayesian Coalescent Approach. J Mol Evol 77, 64–69 (2013). https://doi.org/10.1007/s00239-013-9581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9581-0

Keywords

Navigation