Skip to main content
Log in

Tentacles of Venom: Toxic Protein Convergence in the Kingdom Animalia

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The origin and evolution of venom in many animal orders remain controversial or almost entirely uninvestigated. Here we use cDNA studies of cephalopod posterior and anterior glands to reveal a single early origin of the associated secreted proteins. Protein types recoverd were CAP (CRISP, Antigen 5 [Ag5] and Pathogenesis-related [PR-1]), chitinase, peptidase S1, PLA2 (phospholipase A2), and six novel peptide types. CAP, chitinase, and PLA2 were each recovered from a single species (Hapalochlaena maculosa, Octopus kaurna, and Sepia latimanus, respectively), while peptidase S1 transcripts were found in large numbers in all three posterior gland libraries. In addition, peptidase S1 transcripts were recovered from the anterior gland of H. maculata. We compare their molecular evolution to that of related proteins found in invertebrate and vertebrate venoms, revealing striking similarities in the types of proteins selected for toxic mutation and thus shedding light on what makes a protein amenable for use as a toxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alape-Girón A, Persson B, Cederlund E, Flores-Díaz M, Gutiérrez JM, Thelestam M, Bergman T, Jörnvall H (1999) Elapid venom toxins: multiple recruitments of ancient scaffolds. Eur J Biochem 259(1–2):225–234

    Article  PubMed  Google Scholar 

  • Amarant T, Burkhart W, LeVine H 3rd, Arocha-Pinango CL, Parikh I (1991) Isolation and complete amino acid sequence of two fibrinolytic proteinases from the toxic Saturnid caterpillar Lonomia achelous. Biochim Biophys Acta 1079(2):214–221

    PubMed  CAS  Google Scholar 

  • Asgari S, Zhang G, Zareie R, Schmidt O (2003) A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol 33(10):1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Lynch LL, Haley TL, Arsanjani R (2003) Pseudechetoxin binds to the pore turret of cyclic nucleotide-gated ion channels. J Gen Physiol 122(6):749–760

    Article  PubMed  CAS  Google Scholar 

  • Fang KS, Vitale M, Fehlner P, King TP (1998) cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. Proc Natl Acad Sci USA 85(3):895–899

    Article  Google Scholar 

  • Froy O, Sagiv T, Poreh M, Urbach D, Zilberberg N, Gurevitz M (1999) Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels. J Mol Evol 48(2):187–196

    Article  PubMed  CAS  Google Scholar 

  • Fry BG (2005) From genome to ‘venome’: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Wuster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP (2003) Molecular evolution of elapid snake venom three finger toxins. J Mol Evol 57(1):110–129

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Scheib H, van der Weerd L, Young B, McNaughtan J, Ramjan SF, Vidal N, Poelmann RE, Norman JA (2008) Evolution of an arsenal:structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteom 7(2):215–246

    Article  CAS  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genom Hum Genet (in press)

  • Gennaro JF Jr, Lorincz AE, Brewster HB (1965) The anterior salivary gland of the octopus (Octopus vulgaris) and its mucous secretion. Ann NY Acad Sci 118(24):1021–1025

    Article  PubMed  Google Scholar 

  • Kanda A, Iwakoshi-Ukena E, Takuwa-Kuroda K, Minakata H (2003) Isolation and characterization of novel tachykinins from the posterior salivary gland of the common octopus Octopus vulgaris. Peptides 24(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Kanda A, Takuwa-Kuroda K, Aoyama M, Satake H (2007) A novel tachykinin-related peptide receptor of Octopus vulgaris–evolutionary aspects of invertebrate tachykinin and tachykinin-related peptide. FEBS J 274(9):2229–2239

    Article  PubMed  CAS  Google Scholar 

  • Kita M, Nakamura Y, Okumura Y, Ohdachi SD, Oba Y, Yoshikuni M, Kido H, Uemura D (2004) Blarina toxin, a mammalian lethal venom from the short-tailed shrew Blarina brevicauda: isolation and characterization. Proc Natl Acad Sci USA 101(20):7542–7547

    Article  PubMed  CAS  Google Scholar 

  • Krishnan A, Nair PN, Jones D (1994) Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. J Biol Chem 269(33):20971–20976

    PubMed  CAS  Google Scholar 

  • Milne TJ, Abbenante G, Tyndall JD, Halliday J, Lewis RJ (2003) Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J Biol Chem 278(33):31105–31110

    Article  PubMed  CAS  Google Scholar 

  • Nevalainen TJ, Peuravuori HJ, Quinn RJ, Llewellyn LE, Benzie JA, Fenner PJ, Winkel KD (2004) Phospholipase A2 in cnidaria. Comp Biochem Physiol B Biochem Mol Biol 139(4):731–735

    Article  PubMed  Google Scholar 

  • Nobile M, Magnelli V, Lagostena L, Mochca-Morales J, Possani LD, Prestipino G (1994) The toxin helothermine affects potassium currents in newborn rat cerebellar granule cells. J Membr Biol 139(1):49–55

    PubMed  CAS  Google Scholar 

  • Norman N, Reid A (2000) A guide to squid, cuttlefish and octopuses of Australia. CSIRO Publishing, Australia

    Google Scholar 

  • Robertson A, Stirling D, Robillot C, Llewellyn L, Negri A (2004) First report of saxitoxin in octopi. Toxicon 44:765–771

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez de la Vega RC, Merino E, Becerril B, Possani LD (2003) Novel interactions between K+ channels and scorpion toxins. Trends Pharmacol Sci 24(5):222–227

    PubMed  Google Scholar 

  • Strugnell J, Norman M, Jackson J, Drummond AJ, Cooper A (2005) Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol Phylogenet Evol 37(2):426–441

    Article  PubMed  CAS  Google Scholar 

  • Sutherland SK, Lane WR (1969) Toxins and mode of envenomation of the common ringed or blue-banded octopus. Med J Aust 1(18):893–898

    PubMed  CAS  Google Scholar 

  • Yotsu-Yamashita M, Mebs D, Flachsenberger W (2007) Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon 49(3):410–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants to B.G.F. from the Australian Academy of Science, Australian French Association for Science & Technology, Australia & Pacific Science Foundation, Australian Research Council (DP0665971 and DP0772814, to W.C.H. and J.A.N.), CASS Foundation, Ian Potter Foundation, International Human Frontiers Science Program Organisation, and the Netherlands Organisation for Scientific Research, University of Melbourne (Faculty of Medicine and Department of Biochemistry & Molecular Biology) and a Department of Innovation, Industry & Regional Development Victoria Fellowship. This work was also funded by an Australian Government Department of Education, Science & Training/EGIDE International Science Linkages grant to B.G.F and J.A.N. Accession numbers: GenBank accession numbers for sequences obtained in this study are EU790590–EU790615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Fry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, B.G., Roelants, K. & Norman, J.A. Tentacles of Venom: Toxic Protein Convergence in the Kingdom Animalia. J Mol Evol 68, 311–321 (2009). https://doi.org/10.1007/s00239-009-9223-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9223-8

Keywords

Navigation