Skip to main content
Log in

Evaluating Neanderthal Genetics and Phylogeny

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The retrieval of Neanderthal (Homo neanderthalsensis) mitochondrial DNA is thought to be among the most significant ancient DNA contributions to date, allowing conflicting hypotheses on modern human (Homo sapiens) evolution to be tested directly. Recently, however, both the authenticity of the Neanderthal sequences and their phylogenetic position outside contemporary human diversity have been questioned. Using Bayesian inference and the largest dataset to date, we find strong support for a monophyletic Neanderthal clade outside the diversity of contemporary humans, in agreement with the expectations of the Out-of-Africa replacement model of modern human origin. From average pairwise sequence differences, we obtain support for claims that the first published Neanderthal sequence may include errors due to postmortem damage in the template molecules for PCR. In contrast, we find that recent results implying that the Neanderthal sequences are products of PCR artifacts are not well supported, suffering from inadequate experimental design and a presumably high percentage (>68%) of chimeric sequences due to “jumping PCR” events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Adcock GJ, Dennis ES, Easteal S, Huttley GA, Jermin LS, Peacock WJ, Thorne A (2001) Mitochondrial DNA sequences in ancient Australians: implications for modern human origins. Proc Natl Acad Sci USA 98:537–542

    Article  PubMed  CAS  Google Scholar 

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Beauval C, Maureille B, Lacrampe-Cuyaubére F, Serre D, Peressinotto D, Bordes J-G, Cochard D, Couchoud I, Dubrasquet D, Laroulandie V, Lenoble A, Mallye J-B, Pasty S, Primault J, Rohland N, Pääbo S, Trinkaus E (2005) A late Neanderthal femur from Les Rochers-de-Villeneuve, France. Proc Natl Acad Sci USA 102:7085–7090

    Article  PubMed  CAS  Google Scholar 

  • Binladen J, Wiuf C, Gilbert MT, Bunce M, Barnett R, Larson G, Greenwood AD, Haile J, Ho SY, Hansen AJ, Willerslev E (2006) Assessing the fidelity of ancient DNA sequences amplified from nuclear genes. Genetics 172:733–741

    Article  PubMed  CAS  Google Scholar 

  • Caldararo N, Gabow S. (2000) Mitochondrial DNA analysis and the place of Neanderthals in Homo. Ancient Biomol 3:135–158

    CAS  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million year-old Dominican amber. Science 268:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Caramelli D, Lalueza–Fox C, Vernesi C, Lari M, Casoli A, Mallegni F, Chiarelli B, Dupanloup I, Bertranpetit J, Barbujani G, Bertorelle G (2003) Evidence for a genetic discontinuity between Neanderthals and 24,000–year–old anatomically modern Europeans. Proc Natl Acad Sci USA 100:6593–6597

    Article  PubMed  CAS  Google Scholar 

  • Collins MJ, Waite ER, van Duin ACT (1999) Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philos Trans Roy Soc Lond B 354:51–64

    Article  CAS  Google Scholar 

  • Cooper A, Poinar HN (2001) Ancient DNA: do it right or not at all. Science 18:1139

    Google Scholar 

  • Cooper A, Rambaut A, Macaulay V, Willerslev E, Hansen AJ, Stringer C (2001) Human origins and ancient human DNA. Science 292:1655–1656

    Article  PubMed  CAS  Google Scholar 

  • Currat M, Excoffier L (2004) Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol 2:2264–2274

    Article  CAS  Google Scholar 

  • Endicott P, Gilbert MTP, Stringer C, Lalueza-Fox C, Willerslev E, Hansen AJ, Cooper A (2003) The genetic origins of the Andaman Islanders. Am J Hum Genet 72:178–184

    Article  PubMed  CAS  Google Scholar 

  • Finlayson C (2005) Biogeography and evolution of the genus Homo. TREE 20:457–463

    PubMed  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  PubMed  CAS  Google Scholar 

  • Gilbert MTP, Willerslev E, Hansen AJ, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003a) Distribution patterns of post-mortem damage in human mitochondrial DNA. Am J Hum Genet 72:32–47

    Article  CAS  Google Scholar 

  • Gilbert MTP, Hansen AJ, Willerslev E, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003b) Characterisation of genetic miscoding lesions caused by post-mortem damage. Am J Hum Genet 72:48–61

    Article  CAS  Google Scholar 

  • Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB (2004) Absence of Y. pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150:341–354

    Article  PubMed  CAS  Google Scholar 

  • Gilbert MTP, Bandelt H, Hofreiter M, Barnes I (2005a) Assessing ancient DNA studies. TREE 20:541–544

    Google Scholar 

  • Gilbert MTP, Shapiro B, Drummond A, Cooper A (2005b) Post mortem DNA damage hotspots in Bison (Bison bison and B. bonasus) provide supporting evidence for mutational hotspots in human mitochondria. J Arch Sci 32:1053–1060

    Article  Google Scholar 

  • Gilbert MTP, Rudbeck L, Willerslev E, Hansen AJ, Smith C, Penkman KEH, Prangenberg K, Nielsen-Marsh CM, Jans ME, Arthur P, Lynnerup N, Turner-Walker G, Biddle M, Kjølbye-Biddle B, Collins M (2005c) Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J Arch Sci 32:783–795

    Article  Google Scholar 

  • Gilbert MTP, Hansen AJ, Willerslev E, Turner-Walker G, Collins M (2006) Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Osteoarch 16:156–164

    Article  Google Scholar 

  • Gutiérrez G, Sánchez D, Marín A (2002) A reanalysis of the ancient mitochondrial DNA sequences recovered from Neanderthal bones. Mol Biol Evol 19:1359–1366

    PubMed  Google Scholar 

  • Handt O, Höss M, Krings M, Pääbo S (1994) Ancient DNA: methodological challenges. Experientia 50:524–529

    Article  PubMed  CAS  Google Scholar 

  • Handt O, Meyer S, Haeseler A. von (1998) Compilation of human mtDNA control region sequences. Nucleic Acids Res 26:126–129

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ, Willerslev E, Wiuf C, Mourier T, Arctander P (2001) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 18:262–265

    PubMed  CAS  Google Scholar 

  • Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Available at: 10.1534/genetics.106.057349; accessed April 2, 2006

    Google Scholar 

  • Harvati K (2003) The Neanderthal taxonomic positions: models of intra- and inter-specific craniofacial variation. J Hum Evol 44:107–132

    Article  PubMed  Google Scholar 

  • Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13:212–220

    Article  PubMed  CAS  Google Scholar 

  • Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001a) Ancient DNA. Nature Rev Genet 2:353–360

    Article  CAS  Google Scholar 

  • Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001b) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–47799

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688

    Article  PubMed  Google Scholar 

  • Kim S, Soltis DE, Soltis PS, Suh Y (2004) DNA sequences from Miocene fossils: an ndhF sequence of Magnolia latahensis (Magnoliaceae) and an rbcL sequence of Persea pseudocarolinensis (Lauraceae). Am J Bot 91:615–620

    CAS  Google Scholar 

  • Knight A (2003) The phylogenetic relationship of Neanderthal and modern human mitochondrial DNAs based on informative nucleotide sites. J Hum Evol 44:627–632

    Article  PubMed  Google Scholar 

  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neanderthal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Geisert H, Schmitz RW, Krainitzki H, Pääbo S (1999) DNA sequence of the mitochondrial hypervariable region II from the Neanderthal type specimen. Proc Natl Acad Sci USA 96:5581–5585

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Capelli C, Tschentscher F, Geisert H, Meyer S, von Haeseler A, Grossschmidt K, Possnert G, Paunovic M, Pääbo S (2000) A view of Neanderthal genetic diversity. Nature Genet 26:144–146

    Article  PubMed  CAS  Google Scholar 

  • Lalueza-Fox C, Sampietro ML, Caramelli D, Puder Y, Lari M, Calafell F, Martínez-Maza C, Bastir M, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A (2005) Neanderthal evolutionary genetics: mitochondrial DNA data from the Iberian Peninsula. Mol Biol Evol 22:1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Malmström H, Stora J, Dalen L, Holmlund G, Götherström A (2005) Extensive human DNA contamination in extracts from ancient dog bones and teeth. Mol Biol Evol 22:2040–2047

    Article  PubMed  Google Scholar 

  • Nielsen-Marsh CM, Richards MP, Hauschka PV, homas-Oates JE, Trinkaus E, Pettitt PB, Karavanic I, Poinar H, Collins MJ (2005) Osteocalcin protein sequences of Neanderthals and modern primates. Proc Natl Acad Sci USA 102:5594–5599

    Article  Google Scholar 

  • Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, Krause J, Detter JC, Pääbo S, Rubin EM (2005) Genomic sequencing of Pleistocene cave bears. Science 309:597–599

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M (1998) On the probability of Neanderthal ancestry. Am J Hum Genet 63:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov IV, Gotherstrom A, Romanova GP, Kharitonov VM, Liden K, Goodwin W (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404:490–493

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. J Biol Chem 264:9709–9712

    PubMed  Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  Google Scholar 

  • Poinar H, Kuch M, McDonald G, Martin P, Pääbo S (2003) Nuclear gene sequences from a Late Pleistocene sloth coprolite. Curr Biol 13:1150–1152

    Article  PubMed  CAS  Google Scholar 

  • Pusch CM, Bachmann L (2004) Spiking of contemporary human template DNA with ancient DNA extracts induces mutations under PCR and generates non-authentic mitochondrial sequences. Mol Biol Evol 21:957–964

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drummond A (2004) Tracer v1.2. University of Oxford, Oxford, UK

    Google Scholar 

  • Rodríguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    PubMed  Google Scholar 

  • Schmitz RW, Serre D, Bonani G, Feine S, Hillgruber F, Krainitzki H, Pääbo S, Smith FH (2002) The Neanderthal type site revisited: interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proc Natl Acad Sci USA 99:13342–13347

    Article  PubMed  CAS  Google Scholar 

  • Serre D, Hofreiter M, Pääbo S (2004a) Mutations induced by ancient DNA extracts? Mol Biol Evol 21:1463–1467

    Article  CAS  Google Scholar 

  • Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, Hofreiter M, Possnert G, Pääbo S (2004b) No evidence of Neanderthal mtDNA contribution to early modern humans. PLOS Biol 2:313–317

    Article  CAS  Google Scholar 

  • Skinner AR, Blackwell BAB, Martin S, Ortega A, Blickstein JIB, Golovanova LV, Doronichev VB (2005) ESR dating at Mezmaiskaya Cave, Russia. Appl Radiat Isotopes 62:219–224

    Article  CAS  Google Scholar 

  • Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1268

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Templeton AR (1992) Human origins and analysis of mitochondrial DNA sequences. Science 255:737

    Article  PubMed  CAS  Google Scholar 

  • Templeton A (2002) Out of Africa again and again. Nature 416:45–51

    Article  PubMed  CAS  Google Scholar 

  • von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–329

    Article  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc Lond B 272:3–16

    Article  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017–8021

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Brand T, Binladen J, Gilbert TMP, Shapiro B, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science 300:791–795

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Brand TB, Rønn R, Barnes I, Wiuf C, Gilichinsky DA, Mitchell D, Cooper A (2004a) Long-term persistence of bacterial DNA. Curr Biol 14:R9–R10

    Article  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004b) Isolation of nucleic acids and cultures from ice and permafrost. TREE 19:141–147

    Google Scholar 

  • Wolpoff MH (1989) Multiregional evolution: the fossil alternative to Eden. In: Stringer C, Mellars P (eds) The human revolution. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Wolpoff MH, Wu X, Thorne AG (1984) Modern Homo sapiens origins: a general theory of human evolution involving the fossil evidence from East Asia. In: Smith FH, Spencer F (eds) The origins of modern humans: a world survey of the fossil evidence. Alan R. Liss, New York, pp 411–483

    Google Scholar 

Download references

Acknowledgments

We thank A. Krogh, L. G. T. Jørgensen, and W. Hughes for valuable help and J. P. Huelsenbeck, S. Y. W. Ho, M. Phillips, and J. Haile for helpful discussion. G. Gutierrez was very helpful in providing an electronic version of their data. M.B.H. was supported by the Danish Research Council. C.W. was supported by The Danish Cancer Society. M.T.P.G. was supported by the Marie Curie FP6 Action. H.G. was supported by the Danish National Science Research Council. E.W. was supported by Wellcome Trust, the Carlsberg Foundation, and the Danish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eske Willerslev.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebsgaard, M.B., Wiuf, C., Gilbert, M.P. et al. Evaluating Neanderthal Genetics and Phylogeny. J Mol Evol 64, 50–60 (2007). https://doi.org/10.1007/s00239-006-0017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0017-y

Keywords

Navigation