Skip to main content
Log in

The early evolution of the H-free process

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as n→∞, the minimum degree in G is at least \(cn^{1-(v_{H}-2)/(e_{H}-1)}(\log n)^{1/(e_{H}-1)}\). This gives new lower bounds for the Turán numbers of certain bipartite graphs, such as the complete bipartite graphs K r,r with r≥5. When H is a complete graph K s with s≥5 we show that for some C>0, with high probability the independence number of G is at most \(Cn^{2/(s+1)}(\log n)^{1-1/(e_{H}-1)}\). This gives new lower bounds for Ramsey numbers R(s,t) for fixed s≥5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb. Theory, Ser. A 29, 354–360 (1980)

    Article  MATH  Google Scholar 

  2. Alon, N., Spencer, J.: The Probabilistic Method, second edn. Wiley, New York (2000)

    MATH  Google Scholar 

  3. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: variations and applications. J. Comb. Theory, Ser. B 76, 280–290 (1999)

    Article  MATH  Google Scholar 

  4. Alon, N., Ben-Shimon, S., Krivelevich, M.: A note on regular Ramsey graphs. J. Graph Theory (to appear)

  5. Apostol, T.M.: An elementary view of Euler’s summation formula. Am. Math. Mon. 106, 409–418 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbour, A.D., Karoński, M., Ruciński, A.: A central limit theorem for decomposable random variables, with applications to random graphs. J. Comb. Theory, Ser. B 47, 125–145 (1989)

    Article  MATH  Google Scholar 

  7. Bohman, T.: The triangle-free process. Adv. Math. 221, 1653–1677 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bollobás, B., Riordan, O.: Constrained graph processes. Electron. J. Comb. 7, R18 (2000)

    Google Scholar 

  9. Brown, W.G.: On graphs that do not contain a Thomsen graph. Can. Math. Bull. 9, 281–289 (1966)

    MATH  Google Scholar 

  10. Caro, Y., Li, Y., Rousseau, C.C., Zhang, Y.: Asymptotic bounds for some bipartite graph—complete graph Ramsey numbers. Discrete Math. 220, 51–56 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Durrett, R.: Random Graph Dynamics. Cambridge Univ. Press, Cambridge (2007)

    MATH  Google Scholar 

  12. Erdős, P.: Graph theory and probability, II. Can. J. Math. 13, 346–352 (1961)

    Google Scholar 

  13. Erdős, P.: Extremal problems in number theory, combinatorics and geometry. In: Proceedings of the ICM, pp. 51–70. PWN, Warsaw (1984)

    Google Scholar 

  14. Erdős, P., Simonovits, M.: Some extremal problems in graph theory. Colloq. Math. Soc. János Bolyai 4, 377–390 (1969)

    Google Scholar 

  15. Erdős, P., Spencer, J.H.: Probabilistic Methods in Combinatorics. Academic Press, San Diego (1974)

    Google Scholar 

  16. Erdős, P., Stone, A.H.: On the structure of linear graphs. Bull. Am. Math. Soc. 52, 1087–1091 (1946)

    Article  Google Scholar 

  17. Erdős, P., Suen, S., Winkler, P.: On the size of a random maximal graph. Random Struct. Algorithms 6, 309–318 (1995)

    Google Scholar 

  18. Füredi, Z.: Turán type problems. In: Surveys in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 166, pp. 253–300. Cambridge Univ. Press, Cambridge (1991)

    Google Scholar 

  19. Füredi, Z.: New asymptotics for bipartite Turán numbers. J. Comb. Theory, Ser. A 75, 141–144 (1996)

    Article  MATH  Google Scholar 

  20. Füredi, Z.: An upper bound on Zarankiewicz’ problem. Comb. Probab. Comput. 5, 29–33 (1996)

    Article  MATH  Google Scholar 

  21. Grable, D.: On random greedy triangle packing. Electron. J. Comb. 4, R11 (1997)

    MathSciNet  Google Scholar 

  22. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley, New York (1990)

    MATH  Google Scholar 

  23. Kim, J.H.: The Ramsey number R(3,t) has order of magnitude t 2/log t. Random Struct. Algorithms 7, 173–207 (1995)

    Article  MATH  Google Scholar 

  24. Kövari, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    MATH  Google Scholar 

  25. Li, Y., Zang, W.: The independence number of graphs with a forbidden cycle and Ramsey numbers. J. Comb. Optim. 7, 353–359 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Osthus, D., Taraz, A.: Random maximal H-free graphs. Random Struct. Algorithms 18, 61–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ruciński, A.: Recent developments in random graphs. In: Proceedings of the International Summer School on Probability and Statistics, Varna. Online at: http://www.staff.amu.edu.pl/~rucinski/papers/43.pdf (1994)

  28. Ruciński, A., Wormald, N.: Random graph processes with degree restrictions. Comb. Probab. Comput. 1, 169–180 (1992)

    MATH  Google Scholar 

  29. Seierstad, T.G.: A central limit theorem via differential equations. Ann. Appl. Probab. 19, 661–675 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seierstad, T.G.: Stronger large deviation bounds for Wormald’s differential equation method (submitted)

  31. Spencer, J.: Counting extensions. J. Comb. Theory, Ser. A 55, 247–255 (1990)

    Article  MATH  Google Scholar 

  32. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Math. 20, 69–76 (1997)

    Article  Google Scholar 

  33. Spencer, J.: Maximal trianglefree graphs and Ramsey R(3,k). Available online at: http://www.cs.nyu.edu/spencer/papers/ramsey3k.pdf (unpublished manuscript)

  34. Sudakov, B.: A note on odd cycle-complete graph Ramsey numbers. Electron. J. Comb. 9, N1 (2002)

    MathSciNet  Google Scholar 

  35. Turán, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48, 436–452 (1941)

    MATH  MathSciNet  Google Scholar 

  36. Wolfovitz, G.: Lower bounds for the size of random maximal H-free graphs. Electron. J. Comb. 16, R4 (2009)

    MathSciNet  Google Scholar 

  37. Wormald, N.C.: The differential equation method for random graph processes and greedy algorithms. In: Lectures on Approximation and Randomized Algorithms, pp. 73–155. PWN, Warsaw (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Bohman.

Additional information

T. Bohman was supported in part by NSF grant DMS-0701183.

P. Keevash was supported in part by NSF grant DMS-0555755.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohman, T., Keevash, P. The early evolution of the H-free process. Invent. math. 181, 291–336 (2010). https://doi.org/10.1007/s00222-010-0247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0247-x

Keywords

Navigation