Skip to main content
Log in

A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 23 March 2018

This article has been updated

Abstract

We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime \({\beta < \beta_c}\), and the mean-field lower bound \({\mathbb{P}_\beta[0\longleftrightarrow \infty ]\ge (\beta-\beta_c)/\beta}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that for any \({\beta < \beta_c}\), the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for \({\beta < \beta_c}\), and the mean-field lower bound \({\langle \sigma_0\rangle_\beta^+\ge \sqrt{(\beta^2-\beta_c^2)/\beta^2}}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for \({\beta < \beta_c}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 23 March 2018

    The differential inequality (2.5) should be replaced by

References

  1. Aizenman M., Barsky D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aizenman M., Barsky D.J., Fernández R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman M., Fernández R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44(3–4), 393–454 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aizenman M.: Geometric analysis of \({\varphi ^{4}}\) fields and Ising models. I, II. Commun. Math. Phys. 86(1), 1–48 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aizenman M., Newman C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1–2), 107–143 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Antunović T., Veselić I.: Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs. J. Stat. Phys. 130(5), 983–1009 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Beffara V., Duminil-Copin H.: The self-dual point of the two-dimensional random-cluster model is critical for \({q\geq 1}\). Probab. Theory Rel. Fields 153(3–4), 511–542 (2012)

    Article  MATH  Google Scholar 

  8. Beffara V., Duminil-Copin H.: Smirnov’s fermionic observable away from criticality. Ann. Probab. 40(6), 2667–2689 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benjamini I., Nachmias A., Peres Y.: Is the critical percolation probability local?. Probab. Theory Rel. Fields 149(1–2), 261–269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bollobás B., Riordan O.: A short proof of the Harris–Kesten theorem. Bull. Lond. Math. Soc. 38(3), 470–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chayes, J.T., Chayes, L.: The mean field bound for the order parameter of Bernoulli percolation. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems (Minneapolis, Minnesota, 1984–1985), IMA Volumes in Mathematics and its Applications, vol. 8, pp. 49–71. Springer, New York (1987)

  12. Duminil-Copin, H., Sidoravicius, V., Tassion, V.: Continuity of the phase transition for planar random-cluster and Potts models with \({1\le q\le 4}\). arXiv:1505.04159 (2015)

  13. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Enseignement Mathématique. arXiv:1502.03050 (2015)

  14. Griffiths R.B., Hurst C.A., Sherman S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11, 790–795 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  15. Griffiths R.B.: Correlation in Ising ferromagnets I, II. J. Math. Phys. 8, 478–489 (1967)

    Article  ADS  Google Scholar 

  16. Grimmett, G.: Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Berlin (1999)

  17. Grimmett, G.: The random-cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333. Springer, Berlin (2006)

  18. Hammersley J.M.: Percolation processes: Lower bounds for the critical probability. Ann. Math. Stat. 28, 790–795 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harris T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kesten H.: The critical probability of bond percolation on the square lattice equals \({\frac{1}{2}}\). Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Lieb E.H.: A refinement of Simon’s correlation inequality. Commun. Math. Phys. 77(2), 127–135 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. Menshikov M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288(6), 1308–1311 (1986)

    MathSciNet  Google Scholar 

  23. Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2) 65, 117–149 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Russo L.: A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43(1), 39–48 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Simon B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys. 77(2), 111–126 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Duminil-Copin.

Additional information

Communicated by F. Toninelli

A correction to this article is available online at https://doi.org/10.1007/s00220-018-3118-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duminil-Copin, H., Tassion, V. A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model. Commun. Math. Phys. 343, 725–745 (2016). https://doi.org/10.1007/s00220-015-2480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2480-z

Navigation