Skip to main content
Log in

Magnetotropicity of phosphole and its arsenic analogue

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Spatial ring current models for the phosphole molecule and its arsenic parent have been constructed. Diatropism of these molecules is quite peculiar and fundamentally different from that of benzene as shown by stagnation graphs of current density field. Maps of shielding density are helpful for interpreting the effect of electronic currents on nuclear shielding. Constrained planarity increases the degree of diatropicity quantitatively specified by magnetic descriptors, which implies that ring currents go together with π-electron distortivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Ragué Schleyer R (2001). Chem Rev 101:1115 and articles therein.

  2. Cyrañski M, Krygowski TM, Katrizky AR, von Ragué Schleyer P(2002). J Org Chem 67:1333

    Article  CAS  Google Scholar 

  3. Subramanian G, von Ragué Schleyer P, Jiao H(1996). Angew Chem Int Ed Engl 35:2638

    Article  Google Scholar 

  4. Lazzeretti P(2000) Ring currents. In: Progress in nuclear magnetic resonance spectroscopy, vol. 36. Emsley JW, Feeney J, Sutcliffe LH (eds) Elsevier, Amsterdam, pp. 1–88

  5. Cuesta IG, Jartín RS, Sànchez de Merás A, Lazzeretti P (2003). J Chem Phys 119:5518

    Article  CAS  Google Scholar 

  6. Cuesta IG, Jartín RS, Sànchez de Merás A, Lazzeretti P (2004). J Chem Phys 120:6542

    Article  CAS  Google Scholar 

  7. Cuesta IG, Jartín RS, Sànchez de Merás A, Lazzeretti P (2005). Mol Phys 120:789

    Google Scholar 

  8. Cuesta IG, Sànchez de Merás A, Lazzeretti P (2006). J Comput Chem 27:344

    Article  CAS  Google Scholar 

  9. Cuesta IG, Sànchez de Merás A, Lazzeretti P (2006). J Comput Chem 27:1980

    Article  CAS  Google Scholar 

  10. Egan W, Tang R, Zon G, Mislow K (1971). J Am Chem Soc 93:6205

    Article  CAS  Google Scholar 

  11. Andose JD, Rauk A, Mislow K (1974). J Am Chem Soc 22:6904

    Article  Google Scholar 

  12. Nyulászi L (1995). J Phys Chem 99:586

    Article  Google Scholar 

  13. Dransfeld A, Nyulászi L, Schleyer PvR (1998). Inorg Chem 37:4413

    Article  CAS  Google Scholar 

  14. Johansson MP, Jusélius J (2005). Lett Org Chem 2:469

    Article  CAS  Google Scholar 

  15. Nyulászi L, Keglevich G, Quin LD (1996). J Org Chem 61:7808

    Article  Google Scholar 

  16. Keglevich G, Böcskei Z, Keseru GM, Ujszaszy K, Quin LD (1997). J Am Chem Soc 119:5095

    Article  CAS  Google Scholar 

  17. Cloke FGN, Hitchcock PB, Hunnable P, Nixon JF, Nyulászi L, Niecke E, Thelen V (1998). Angew Chem Int Ed Engl 37:1083

    Article  CAS  Google Scholar 

  18. Nyulászi L (2001). Chem Rev 101:1229

    Article  CAS  Google Scholar 

  19. Nyulászi L (2000). Tetrahedron 56:79

    Article  Google Scholar 

  20. Lazzeretti P (2004). Phys Chem Chem Phys 6:217

    Article  CAS  Google Scholar 

  21. Jug K, Hiberty PC, Shaik S (2001). Chem Rev 101:1477

    Article  CAS  Google Scholar 

  22. Havenith RWA, Jenneskens LW, Fowler PW, Steiner E (2003). Chem Comm 748

  23. Havenith RWA, Fowler PW, Jenneskens LW, Steiner E (2003). J Phys Chem A 107:1867

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone J, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA(1998). Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh

  25. Zanasi R (1996). J Chem Phys 105:1460

    Article  CAS  Google Scholar 

  26. Lazzeretti P, Malagoli M, Zanasi R (1991). Technical report on project “ sistemi informatici e calcolo parallelo”, Research Report 1/67, CNR

  27. van Duijneveldt FB (1971). Gaussian basis sets for the atoms H-Ne for use in molecular calculations, Research Report RJ 945 IBM

  28. McLean AD, Chandler GS(1980). J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  29. Woon DE, Dunning TH, Jr (1993). J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  30. Angeli C, Bak KL, Bakken V, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Enevoldsen T, Fernández B, Hättig C, Hald K, Halkier A, Heiberg H, Helgaker T, Hettema H, Jensen HJA, Jonsson D, Jørgensen P, Kirpekar S, Klopper W, Kobayashi R, Koch H, Ligabue A, Lutnaes OB, Mikkelsen KV, Norman P, Olsen J, Packer MJ, Pedersen TB, Rinkevicius Z, Rudberg E, Ruden TA, Ruud K, Salek P, Sánchez de Merás A, Saue T, Sauer SPA, Schimmelpfennig B, Sylvester-Hvid KO, Taylor PR, Vahtras O, Wilson DJ, Ågren H, Dalton, An electronic structure program, Release 2.0, Dalton,(http://www.kjemi.uio.no/software/dalton/).

  31. Pelloni S, Ligabue A, Lazzeretti P (2004). Org Lett 6:4451

    Article  CAS  Google Scholar 

  32. Ferraro MB, Faglioni F, Ligabue A, Pelloni S, Lazzeretti P (2005). Magn Res Chem 43:316

    Article  CAS  Google Scholar 

  33. Pelloni S, Faglioni F, Zanasi R, Lazzeretti P (2006). Phys Rev A 74:012506

    Article  CAS  Google Scholar 

  34. The LINUX and WINDOWS versions of the graphic code used to obtain three-dimensional representations of the stagnation graph of arsole and phosphole molecules and the maps reporting streamlines and moduli of the current density are available as supporting information. This material can also be downloaded at https://theochem.chimfar.unimo.it/TCA/

  35. Keith TA, Bader RFW (1993). J Chem Phys 99:3669

    Article  CAS  Google Scholar 

  36. Pelloni S, Lazzeretti P Theor. Chem. Acc., (in press,). DOI:10.1007/s00214-006-0211-4

  37. Ferraro MB, Lazzeretti P, Viglione RG, Zanasi R (2004). Chem Phys Lett 390:268

    Article  CAS  Google Scholar 

  38. Gomes JANF (1983). J Chem Phys 78:4585

    Article  CAS  Google Scholar 

  39. Gomes JANF (1983). Phys Rev A 28:559

    Article  CAS  Google Scholar 

  40. Gomes JANF (1983). J Mol Struct (THEOCHEM). 93:111

    Article  Google Scholar 

  41. Soncini A, Fowler PW, Lazzeretti P, Zanasi R (2005). Chem Phys Lett 401:164

    Article  CAS  Google Scholar 

  42. Mo Y, von Ragué Schleyer P(2006). Chemistry Eur J 12:2009

    Article  CAS  Google Scholar 

  43. Binsch G (1973) Naturwiss. 60:369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lazzeretti.

Additional information

Contribution to the Fernando Bernardi Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelloni, S., Lazzeretti, P. Magnetotropicity of phosphole and its arsenic analogue. Theor Chem Account 118, 89–97 (2007). https://doi.org/10.1007/s00214-007-0247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0247-0

Keywords

Navigation