Skip to main content

Advertisement

Log in

At the frontline of Alzheimer’s disease treatment: γ-secretase inhibitor/modulator mechanism

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Genetic and biological studies provide evidence that the production and deposition of amyloid-β peptides (Aβ) contribute to the etiology of Alzheimer’s disease. β- and γ-secretases, which are responsible for the generation of Aβ, are plausible molecular targets for Alzheimer’s disease treatment. γ-Secretase is an unusual aspartic protease that cleaves the scissile bond within the transmembrane domain. This unusual enzyme is composed of a high molecular weight membrane protein complex containing presenilin, nicastrin, Aph-1 and Pen-2. Drugs that regulate the production of Aβ by inhibiting or modulating γ-secretase activity could provide a disease-modifying effect on Alzheimer’s disease, although recent studies suggest that γ-secretase plays important roles in cellular signaling including Notch. Thus, understanding the molecular mechanism whereby γ-secretase recognizes and cleaves its substrate is a critical issue for the development of compounds that specifically regulate Aβ-generating γ-secretase activity. This review focuses on the structure and function relationship of γ-secretase complex and the mode of action of the γ-secretase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barten DM, Guss VL, Corsa JA, Loo A, Hansel SB, Zheng M, Munoz B, Srinivasan K, Wang B, Robertson BJ, Polson CT, Wang J, Roberts SB, Hendrick JP, Anderson JJ, Loy JK, Denton R, Verdoorn TA, Smith DW, Felsenstein KM (2005) Dynamics of β-amyloid reductions in brain, cerebrospinal fluid, and plasma of β-amyloid precursor protein transgenic mice treated with a γ-secretase inhibitor. J Pharmacol Exp Ther 312:635–643

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N, Glista M, Rogaeva E, Wakutani Y, Pardossi-Piquard R, Ruan X, Tandon A, Checler F, Marambaud P, Hansen K, Westaway D, St George-Hyslop P, Fraser P (2006) TMP21 is a presenilin complex component that modulates γ-secretase but not ɛ-secretase activity. Nature 440:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  Google Scholar 

  • Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of γ-secretase activity. Nat Cell Biol 5:486–488

    Article  PubMed  CAS  Google Scholar 

  • Esler WP, Kimberly WT, Ostaszewski BL, Diehl TS, Moore CL, Tsai JY, Rahmati T, Xia W, Selkoe DJ, Wolfe MS (2000) Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat Cell Biol 2:428–434

    Article  PubMed  CAS  Google Scholar 

  • Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis MC, Parks AL, Xu W, Li J, Gurney M, Myers RL, Himes CS, Hiebsch R, Ruble C, Nye JS, Curtis D (2002) aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev Cell 3:85–97

    Article  PubMed  CAS  Google Scholar 

  • Fuwa H, Hiromoto K, Takahashi Y, Yokoshima S, Kan T, Fukuyama T, Iwatsubo T, Tomita T, Natsugari H (2006) Synthesis of biotinylated photoaffinity probes based on arylsulfonamide γ-secretase inhibitors. Bioorg Med Chem Lett 16:4184–4189

    Article  PubMed  CAS  Google Scholar 

  • Fuwa H, Takahashi Y, Konno Y, Watanabe N, Miyashita H, Sasaki M, Natsugari H, Kan T, Fukuyama T, Tomita T, Iwatsubo T (2007) Divergent synthesis of multifunctional molecular probes to elucidate the enzyme specificity of dipeptidic γ-secretase inhibitors. ACS Chem Biol 2:408–418

    Article  PubMed  CAS  Google Scholar 

  • Goutte C, Tsunozaki M, Hale VA, Priess JR (2002) APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc Natl Acad Sci USA 99:775–779

    Article  PubMed  CAS  Google Scholar 

  • Hayashi I, Urano Y, Fukuda R, Isoo N, Kodama T, Hamakubo T, Tomita T, Iwatsubo T (2004) Selective reconstitution and recovery of functional γ-secretase complex on budded baculovirus particles. J Biol Chem 279:38040–38046

    Article  PubMed  CAS  Google Scholar 

  • Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B (2000) Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2:461–462

    Article  PubMed  CAS  Google Scholar 

  • Ilagan MX, Kopan R (2007) SnapShot: notch signaling pathway. Cell 128:1246

    Article  PubMed  Google Scholar 

  • Isoo N, Sato C, Miyashita H, Shinohara M, Takasugi N, Morohashi Y, Tsuji S, Tomita T, Iwatsubo T (2007) Aβ42 overproduction associated with structural changes in the catalytic pore of γ-secretase: common effects of Pen-2 N-terminal elongation and fenofibrate. J Biol Chem 282:12388–12396

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of Aβ 42(43) and Aβ 40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ 42(43). Neuron 13:45–53

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Ilagan MX (2004) γ-Secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 5:499–504

    Article  PubMed  CAS  Google Scholar 

  • Lazarov VK, Fraering PC, Ye W, Wolfe MS, Selkoe DJ, Li H (2006) Electron microscopic structure of purified, active γ-secretase reveals an aqueous intramembrane chamber and two pores. Proc Natl Acad Sci USA 103:6889–6894

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000a) Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA 97:6138–6143

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000b) Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694

    Article  PubMed  CAS  Google Scholar 

  • Lleo A, Berezovska O, Herl L, Raju S, Deng A, Bacskai BJ, Frosch MP, Irizarry M, Hyman BT (2004) Nonsteroidal anti-inflammatory drugs lower Aβ42 and change presenilin 1 conformation. Nat Med 10:1065–1066

    Article  PubMed  CAS  Google Scholar 

  • Morohashi Y, Kan T, Tominari Y, Fuwa H, Okamura Y, Watanabe N, Sato C, Natsugari H, Fukuyama T, Iwatsubo T, Tomita T (2006) C-terminal fragment of presenilin is the molecular target of a dipeptidic γ-secretase-specific inhibitor DAPT. J Biol Chem 281:14670–14676

    Article  PubMed  CAS  Google Scholar 

  • Netzer WJ, Dou F, Cai D, Veach D, Jean S, Li Y, Bornmann WG, Clarkson B, Xu H, Greengard P (2003) Gleevec inhibits β-amyloid production but not Notch cleavage. Proc Natl Acad Sci USA 100:12444–12449

    Article  PubMed  CAS  Google Scholar 

  • Niimura M, Isoo N, Takasugi N, Tsuruoka M, Ui-Tei K, Saigo K, Morohashi Y, Tomita T, Iwatsubo T (2005) Aph-1 contributes to the stabilization and trafficking of the γ-secretase complex through mechanisms involving intermolecular and intramolecular interactions. J Biol Chem 280:12967–12975

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Mio K, Hayashi I, Miyashita H, Fukuda R, Kopan R, Kodama T, Hamakubo T, Iwatsubo T, Tomita T, Sato C (2006) Three-dimensional structure of the γ-secretase complex. Biochem Biophys Res Commun 343:525–534

    Article  PubMed  CAS  Google Scholar 

  • Okochi M, Fukumori A, Jiang J, Itoh N, Kimura R, Steiner H, Haass C, Tagami S, Takeda M (2006) Secretion of the Notch-1 Aβ-like peptide during Notch signaling. J Biol Chem 281:7890–7898

    Article  PubMed  CAS  Google Scholar 

  • Parks AL, Curtis D (2007) Presenilin diversifies its portfolio. Trends Genet 23:140–150

    Article  PubMed  CAS  Google Scholar 

  • Petit A, Bihel F, Alves da Costa C, Pourquie O, Checler F, Kraus JL (2001) New protease inhibitors prevent γ-secretase-mediated production of Aβ40/42 without affecting Notch cleavage. Nat Cell Biol 3:507–511

    Article  PubMed  CAS  Google Scholar 

  • Sato C, Morohashi Y, Tomita T, Iwatsubo T (2006) Structure of the catalytic pore of γ-secretase probed by the accessibility of substituted cysteines. J Neurosci 26:12081–12088

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B, Baumann S, Braun HA, Larbig G (2006) Inhibitors and modulators of β- and γ-secretase. Curr Top Med Chem 6:377–392

    Article  PubMed  CAS  Google Scholar 

  • Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, Gao H, Higgins MA, May PC, Ryan TP (2003) Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional γ-secretase inhibitor. J Biol Chem 278:46107–46116

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, Ball H, Dann CE 3rd, Sudhof T, Yu G (2005) Nicastrin functions as a γ-secretase-substrate receptor. Cell 122:435–447

    Article  PubMed  CAS  Google Scholar 

  • Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, Ness D, May PC (2005) Safety, tolerability, and changes in amyloid β concentrations after administration of a γ-secretase inhibitor in volunteers. Clin Neuropharmacol 28:126–132

    Article  PubMed  CAS  Google Scholar 

  • Siemers ER, Quinn JF, Kaye J, Farlow MR, Porsteinsson A, Tariot P, Zoulnouni P, Galvin JE, Holtzman DM, Knopman DS, Satterwhite J, Gonzales C, Dean RA, May PC (2006) Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66:602–604

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Than M, Bode W, Haass C (2006) Pore-forming scissors? A first structural glimpse of γ-secretase. Trends Biochem Sci 31:491–493

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Hayashi I, Tominari Y, Rikimaru K, Morohashi Y, Kan T, Natsugari H, Fukuyama T, Tomita T, Iwatsubo T (2003) Sulindac sulfide is a noncompetitive γ-secretase inhibitor that preferentially reduces Aβ42 generation. J Biol Chem 278:18664–18670

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003) The role of presenilin cofactors in the γ-secretase complex. Nature 422:438–441

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17:181–190

    Article  PubMed  CAS  Google Scholar 

  • Tolia A, Chavez-Gutierrez L, De Strooper B (2006) Contribution of presenilin transmembrane domains 6 and 7 to a water-containing cavity in the γ-secretase complex. J Biol Chem 281:27633–27642

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Iwatsubo T (2006) γ-Secretase as a therapeutic target for treatment of Alzheimer’s disease. Curr Pharm Des 12:661–670

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J, Grunberg J, Haass C, Iwatsubo T, Obata K (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 94:2025–2030

    Article  PubMed  CAS  Google Scholar 

  • Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414:212–216

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS (2006) The γ-Secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45:7931–7939

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398:513–517

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407:48–54

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Zhou H, Walian PJ, Jap BK (2005) CD147 is a regulatory subunit of the γ-secretase complex in Alzheimer’s disease amyloid β-peptide production. Proc Natl Acad Sci USA 102:7499–7504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Takeshi Iwatsubo (The University of Tokyo) and all colleagues who collaborated in the studies cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Tomita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, T. At the frontline of Alzheimer’s disease treatment: γ-secretase inhibitor/modulator mechanism. Naunyn-Schmied Arch Pharmacol 377, 295–300 (2008). https://doi.org/10.1007/s00210-007-0206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0206-2

Keywords

Navigation