Skip to main content
Log in

The Bousfield lattice of a triangulated category and stratification

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a tensor triangulated category which is well generated in the sense of Neeman, it is shown that the collection of Bousfield classes forms a set. This set has a natural structure of a complete lattice which is then studied, using the notions of stratification and support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso Tarrí o L., Jeremías López A., Souto Salorio M.J.: Bousfield localization on formal schemes. J. Algebra 278(2), 585–610 (2004)

    Article  MathSciNet  Google Scholar 

  2. Balmer P.: The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math. 588, 149–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balmer P., Favi G.: Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. 102(6), 1161–1185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson D.J., Iyengar S.B., Krause H.: Local cohomology and support for triangulated categories. Ann. Sci. École Norm. Sup. 41(4), 573–619 (2008)

    MathSciNet  Google Scholar 

  5. Benson D.J., Iyengar S.B., Krause H.: Stratifying modular representations of finite groups. Ann. Math. (1) 174, 1643–1684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benson D.J., Iyengar S.B., Krause H.: Stratifying triangulated categories. J. Topol. 4, 641–666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benson, D.J., Iyengar, S.B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. doi:10.1515/crelle.2011.180. arXiv:1008.3701

  8. Borceux, F.: Handbook of categorical algebra. 3. In: Encyclopedia of Mathematics and its Applications, vol. 52. Cambridge University Press, Cambridge (1994)

  9. Bousfield, A.K.: The Boolean algebra of spectra. Comm. Math. Helv. 54, 368–377 (1979) [Correction: Comm. Math. Helv. 58, 599–600 (1983)]

  10. Buan A.B., Krause H., Solberg Ø.: Support varieties: an ideal approach. Homol. Homot. Appl. 9(1), 45–74 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Casacuberta, C., Gutiérrez, J.J., Rosický, J.: A generalization of Ohkawa’s theorem. (preprint 2012). arXiv:1203.6395

  12. Christensen J.D., Strickland N.P.: Phantom maps and homology theories. Topology 37(2), 339–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dwyer W.G., Palmieri J.H.: Ohkawa’s theorem: there is a set of Bousfield classes. Proc. Am. Math. Soc. 129(3), 881–886 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dwyer W.G., Palmieri J.H.: The Bousfield lattice for truncated polynomial algebras. Homol. Homot. Appl. 10(1), 413–436 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Gabriel P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Hochster M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43–60 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hovey, M., Palmieri, J.H.: The structure of the Bousfield lattice. In: Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998). Contemp. Math., vol. 239, pp. 175–196. Amer. Math. Soc., Providence, RI (1999)

  18. Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. In: Mem. Amer. Math. Soc., vol. 610. Amer. Math. Soc., Providence (1997)

  19. Iyengar, S.B.: The Bousfield lattice of the stable module category of a finite group. In: Representation Theory of Quivers and Finite Dimensional Algebras (Oberwolfach, 2011), Oberwolfach Reports, vol. 8, No. 1. European Mathematical Society, Zürich (2011)

  20. Johnstone, P.T.: Stone spaces, reprint of the 1982 edition. In: Cambridge Studies in Advanced Mathematics, Vol. 3, Cambridge University Press, Cambridge (1986)

  21. Kock, J.: Spectra, supports, and Hochster duality. Letter to G. Favi and P. Balmer, December 2007. http://mat.uab.es/~kock/cat/spec.pdf

  22. Krause H.: Smashing subcategories and the telescope conjecture—an algebraic approach. Invent. Math. 139(1), 99–133 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krause H.: On Neeman’s well generated triangulated categories. Doc. Math. 6, 121–126 (2001)

    MathSciNet  Google Scholar 

  24. Krause, H.: Localization theory for triangulated categories. In: Triangulated Categories. London Math. Soc. Lecture Note Ser., vol. 375, pp. 161–235, Cambridge University Press, Cambridge (2010)

  25. Lewis, L.G., Jr. et al.: Equivariant stable homotopy theory. In: Lecture Notes in Mathematics, vol. 1213. Springer, Berlin (1986)

  26. Neeman A.: The chromatic tower for D(R). Topology 31(3), 519–532 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Neeman A.: The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4) 25(5), 547–566 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Neeman A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Am. Math. Soc. 9(1), 205–236 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neeman, A.: Triangulated categories. In: Annals of Math. Studies, vol. 148. Princeton University Press, Princeton (2001)

  30. Ohkawa T.: The injective hull of homotopy types with respect to generalized homology functors. Hiroshima Math. J. 19(3), 631–639 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Ravenel, D.C.: Nilpotence and periodicity in stable homotopy theory. In: Annals of Mathematics Studies, vol. 128. Princeton University Press, Princeton, NJ (1992)

  32. Rota G.-C.: The many lives of lattice theory. Not. Am. Math. Soc. 44(11), 1440–1445 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Stevenson, G.: Support theory via actions of tensor triangulated categories. J. Reine Angew. Math. doi:10.1515/crelle-2012-0025. arXiv:1105.4692

  34. Stevenson, G.: Subcategories of singularity categories via tensor actions (preprint 2011). arXiv:1105:4698

  35. Stone M.H.: Topological representations of distributive lattices and Brouwerian logics. Časopis pro Pěstování Matematiky a Fysiky 67, 1–25 (1937)

    Google Scholar 

  36. Strickland, N.P.: Axiomatic stable homotopy. In: Axiomatic, Enriched and Motivic Homotopy Theory. NATO Sci. Ser. II Math. Phys. Chem., vol. 131, pp. 69–98, Kluwer Acad. Publ., Dordrecht (2004)

  37. Thomason R.W.: The classification of triangulated subcategories. Compos. Math. 105(1), 1–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque, vol. 239. Société Math. de France (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Krause.

Additional information

The research of SI was partly supported by National Science Foundation Grant DMS 0903493.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyengar, S.B., Krause, H. The Bousfield lattice of a triangulated category and stratification. Math. Z. 273, 1215–1241 (2013). https://doi.org/10.1007/s00209-012-1051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1051-7

Keywords

Mathematics Subject Classification (2000)

Navigation