Skip to main content
Log in

The Cannon–Thurston map for punctured-surface groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let Γ be the fundamental group of a compact surface group with non-empty boundary. We suppose that Γ admits a properly discontinuous strictly type preserving action on hyperbolic 3-space such that there is a positive lower bound on the translation lengths of loxodromic elements. We describe the Cannon–Thurston map in this case. In particular, we show that there is a continuous equivariant map of the circle to the boundary of hyperbolic 3-space, where the action on the circle is obtained by taking any finite-area complete hyperbolic structure on the surface, and lifting to the boundary of hyperbolic 2-space. We deduce that the limit set is locally connected, hence a dentrite in the singly degenerate case. Moreover, we show that the Cannon–Thurston map can be described topologically as the quotient of the circle by the equivalence relations arising from the ends of the quotient 3-manifold. For closed surface bundles over the circle, this was obtained by Cannon and Thurston. Some generalisations and variations have been obtained by Minsky, Mitra, Alperin, Dicks, Porti, McMullen and Cannon. We deduce that a finitely generated kleinian group with a positive lower bound on the translation lengths of loxodromics has a locally connected limit set assuming it is connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alperin R.C., Dicks W., Porti J.(1999): The boundary of the Gieseking tree in hyperbolic three-space. Topology Appl. 93, 219–259

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson J.W., Maskit B.(1996): On the local connectivity of limit sets of kleinian groups. Complex Variables 31, 177–183

    MATH  MathSciNet  Google Scholar 

  3. Bestvina M., Feighn M.(1992): A combination theorem for negatively curved groups. J. Differential Geom. 35, 85–101

    MATH  MathSciNet  Google Scholar 

  4. Bonahon F.(1986): Bouts des variétés hyperboliques de dimension 3. Ann. of. Math. 124, 71–158

    Article  MATH  MathSciNet  Google Scholar 

  5. Bowditch B.H.(1991): Notes on Gromov’s hyperbolicity criterion for path-metric spaces. In: Ghys E., Haefliger A., Verjovsky A. (eds). Group theory from a geometrical viewpoint. World Scientific, Singapore, pp. 64–167

    Google Scholar 

  6. Bowditch B.H.(1997) : Relatively hyperbolic groups. preprint, Southampton

    Google Scholar 

  7. Bowditch B.H.(2002): Stacks of hyperbolic spaces and ends of 3-manifolds. preprint, Southampton

    Google Scholar 

  8. Bowditch B.H.(2005): Geometric models for hyperbolic 3-manifolds. preprint, Southampton

    Google Scholar 

  9. Bowditch B.H.(2005): End invariants of hyperbolic 3-manifolds. preprint, Southampton

    Google Scholar 

  10. Brock, J.F., Canary, R.D., Minsky, Y.N.: Classification of Kleinian surface groups II: the ending lamination conjecture. preprint (2004)

  11. Canary R.D.(1993): Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc. 6, 1–35

    Article  MATH  MathSciNet  Google Scholar 

  12. Canary R.D., Epstein D.B.A., Green P.(1987): Notes on notes of Thurston. In: Epstein D.B.A. (eds). Analytic and geometric aspects of hyperbolic space. London Math. Soc. Lecture Notes Series No. 111, Cambridge University Press, Cambridge, pp. 3–92

    Google Scholar 

  13. Cannon, J.W.: The Peano curve defined by a punctured torus bundle. in preparation

  14. Cannon J.W., Dicks W.(2002) : On hyperbolic once-punctured-torus bundles. Geom. Dedicata. 94, 141–183

    Article  MATH  MathSciNet  Google Scholar 

  15. Cannon, J.W., Thurston, W.P.: Group invariant Peano curves. preprint (1989)

  16. Casson, A.J., Bleiler, S.A.: Automorphisms of surfaces after Neilsen and Thurston. London Math. Soc. Student Texts No. 9, Cambridge University Press (1988)

  17. Freedman M., Hass J., Scott P.(1983): Least area incompressible surfaces in 3-manifolds. Invent Math 71, 609–642

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghys, E., de la Harpe, P.: (eds.): Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics No. 83, Birkhäuser (1990)

  19. Gromov M.(1987): Hyperbolic groups. In: Gersten S.M. (eds). Essays in Group Theory. M.S.R.I. Publications No. 8, Springer-Verlag, Berlin Heidelberg New York, pp. 75–263

    Google Scholar 

  20. Gromov, M.: Metric structures for Reimannian and non-Riemannian spaces. In: LaFontaine, J., Pansu, P. (eds.) Progress in Mathematics No. 152, Birkhäuser (1988)

  21. Klarreich E.(1999): Semiconjugacies between Kleinian group actions on the Riemann sphere. Amer. J. Math. 121, 1031–1078

    MATH  MathSciNet  Google Scholar 

  22. Mahan Mj.(2005): Cannon–Thurston maps for pared manifolds with bounded geometry. preprint, Belur Math

    Google Scholar 

  23. Mahan Mj.(2005): Cannon–Thurston maps, i-bounded geometry and a theorem of McMullen. preprint, Belur Math

    Google Scholar 

  24. Mahan Mj.(2005): Cannon–Thurston maps and Kleinian groups: amalgamation geometry and the 5-holed sphere. preprint, Belur Math

    Google Scholar 

  25. McMullen C.T.(2001): Local connectivity, Kleinian groups and geodesics on the blowup of the torus. Invent. Math. 146, 35–91

    Article  MATH  MathSciNet  Google Scholar 

  26. Minsky Y.N.(1993): Teichmüller geodesics and ends of hyperbolic 3-manifolds. Topology 32, 625–647

    Article  MATH  MathSciNet  Google Scholar 

  27. Minsky Y.N. (1994): On rigidity, limit sets, and ends of hyperbolic 3-manifolds. J. Amer. Math. Soc. 7, 539–588

    Article  MATH  MathSciNet  Google Scholar 

  28. Minsky Y.N.(1999): The classification of punctured torus groups. Ann. of Math. 149, 559–626

    Article  MATH  MathSciNet  Google Scholar 

  29. Minsky Y.N.(2002): The classification of Kleinian surface groups I: models and bounds. preprint, Stony Brook

    Google Scholar 

  30. Mitra M.(1998): Cannon–Thurston maps for trees of hyperbolic metric spaces. J. Differential Geom. 48, 135–164

    MATH  MathSciNet  Google Scholar 

  31. Mitra M.(1998): Cannon–Thurston maps for hyperbolic group extenstions. Topology 37, 527–538

    Article  MATH  MathSciNet  Google Scholar 

  32. Otal, J-P.: Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3. Astérisque No. 235, Société Mathématique de France (1996)

  33. Thurston W.P.(1979): The geometry and topology of 3-manifolds. notes, Princeton

    Google Scholar 

  34. Thurston W.P.(1986): Hyperbolic structures on 3-manifolds II: Surface groups and manifolds which fiber over the circle. preprint, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowditch, B.H. The Cannon–Thurston map for punctured-surface groups. Math. Z. 255, 35–76 (2007). https://doi.org/10.1007/s00209-006-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0012-4

Mathematics Subject Classification (2000)

Navigation