Skip to main content
Log in

Dissimilation of the C2 sulfonates

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Organosulfonates are widespread in the environment, both as natural products and as xenobiotics; and they generally share the property of chemical stability. A wide range of phenomena has evolved in microorganisms able to utilize the sulfur or the carbon moiety of these compounds; and recent work has centered on bacteria. This Mini-Review centers on bacterial catabolism of the carbon moiety in the C2-sulfonates and the fate of the sulfonate group. Five of the six compounds examined are subject to catabolism, but information on the molecular nature of transport and regulation is based solely on sequencing data. Two mechanisms of desulfonation have been established. First, there is the specific monooxy-genation of ethanesulfonate or ethane-1,2-disulfonate. Second, the oxidative, reductive and fermentative modes of catabolism tend to yield the intermediate sulfoacetaldehyde, which is now known to be desulfonated to acetyl phosphate by a thiamin-diphosphate-dependent acetyltransferase. This enzyme is widespread and at least three subgroups can be recognized, some of them in genomic sequencing projects. These data emphasize the importance of acetyl phosphate in bacterial metabolism. A third mechanism of desulfonation is suggested: the hydrolysis of sulfoacetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z. Chipman DM (2001) Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946–11954

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H, Fuchs R, Taraz K, Marek-Kozaczuk M, Skorupska A (1998) Dihydropyoverdin-7-sulfonic acids — unusual bacterial metabolites. Nat Prod Lett 12:125–130

    Google Scholar 

  • Chien C-C, Leadbetter ER, Godchaux W III (1999)Rhodococcus spp utilize taurine (2-aminoethanesulfonate) as sole source of carbon, energy, nitrogen and sulfur for aerobic respiratory growth. FEMS Microbiol Lett 176:333–337

    Article  CAS  Google Scholar 

  • Cook AM, Laue H, Junker F (1999) Microbial desulfonation. FEMS Microbiol Rev 22:399–419

    Article  Google Scholar 

  • Denger K, Cook AM (2001) Ethanedisulfonate is degraded via sulfoacetaldehyde inRalstonia sp. strain EDS1. Arch Microbiol 176:89–95

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Laue H, Cook AM (1997a) Anaerobic taurine oxidation: a novel reaction by a nitrate-reducingAlcaligenes sp. Microbiology 143:1919–1924

    PubMed  CAS  Google Scholar 

  • Denger K, Laue H, Cook AM (1997b) Thiosulfate as a metabolic product: the bacterial fermentation of taurine. Arch Microbiol 168:297–301

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Stackebrandt E, Cook AM (1999)Desulfonispora thiosulfatigenes gen. no v., sp. nov., a widespread, taurine-fermenting, thiosulfate-producing, anaerobic bacterium. Int J Syst Bacteriol 49:1599–1603

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Ruff J, Rein U, Cook AM (2001) Sulfoacetaldehyde sulfo-lyase (EC 4.4.1.12) fromDesulfonispora thiosulfatigenes: purification, properties and primary structure. Biochem J 357:581–586

    Article  PubMed  CAS  Google Scholar 

  • Erdlenbruch BNS, Kelly DP, Murrell CJ (2001) Alkanesulfonate degradation by novel strains ofAchromobacter xylosoxidans, Tsukamurella wratislaviensis andRhodococcus sp., and evidence for an ethanesulfonate monooxygenase inA. xylosoxidans strain AE4. Arch Microbiol 176:406–414

    Article  PubMed  CAS  Google Scholar 

  • Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate biosynthesizing enzymes. J Biol Chem 277:13421–13429

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Ikeda K, Yamada H, Tanaka S (1963) Bacterial degradation of taurine. J Biochem 54:312–316

    PubMed  CAS  Google Scholar 

  • Kelly DP, Murrell JC (1999) Microbial metabolism of methane-sulfonic acid. Arch Microbiol 172:341–348

    Article  PubMed  CAS  Google Scholar 

  • Kertesz MA (2000) Riding the sulfur cycle — metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    PubMed  CAS  Google Scholar 

  • Kertesz MA, Kahnert A (2001) Organoschwefel-Metabolismus in Gram-negativen Bakterien. Biospektrum 7:325–329

    CAS  Google Scholar 

  • Kertesz MA, Wietek C (2001) Desulfurization and desulfonation: applications of sulfur-controlled gene expression in bacteria. Appl Microbiol Biotechnol 57:460–466

    Article  PubMed  CAS  Google Scholar 

  • King JE, Quinn JP (1997) Metabolism of sulfoacetate by environmentalAureobacterium sp. andComamonas acidovorans isolates. Microbiology 143:3907–3912

    CAS  Google Scholar 

  • King JE, Jaouhari R, Quinn JP (1997) The role of sulfoacetaldehyde sulfo-lyase in the mineralization of isethionate by an environmentalAcinetobacter isolate. Microbiology 143:2339–2343

    CAS  Google Scholar 

  • Kondo H, Ishimoto M (1972) Enzymatic formation of sulfite and acetate from sulfoacetaldehyde, a degradation product of taurine. J Biochem 72:487–489

    PubMed  CAS  Google Scholar 

  • Kondo H, Ishimoto M (1974) Requirement for thiamine pyrophosphate and magnesium for sulfoacetaldehyde sulfo-lyase activity. J Biochem 76:229–231

    PubMed  CAS  Google Scholar 

  • Kondo H, Ishimoto M (1975) Purification and properties of sulfoacetaldehyde sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate. J Biochem 78:317–325

    PubMed  CAS  Google Scholar 

  • Kondo H, Ishimoto M (1987) Taurine dehydrogenase. Methods Enzymol 143:496–499

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Anada H, Ohsawa K, Ishimoto M (1971) Formation of sulfoacetaldehyde from taurine in bacterial extracts. J Biochem 69:621–623

    PubMed  CAS  Google Scholar 

  • Kondo H, Kagotani K, Oshima M, Ishimoto M (1973) Purification and some properties of taurine dehydrogenase from a bacterium. J Biochem 73:1269–1278

    PubMed  CAS  Google Scholar 

  • Kondo H, Niki H, Takahashi S, Ishimoto M (1977) Enzymatic oxidation of isethionate to sulfoacetaldehyde in bacterial extract. J Biochem 81:1911–1916

    PubMed  CAS  Google Scholar 

  • Laue H, Cook AM (2000a) Biochemical and molecular characterization of taurine:pyruvate transaminase from the anaerobeBilophila wadsworthia. Eur J Biochem 267:6841–6848

    Article  PubMed  CAS  Google Scholar 

  • Laue H, Cook AM (2000b) Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism inBilophila wadsworthia. Arch Microbiol 174:162–167

    Article  PubMed  CAS  Google Scholar 

  • Laue H, Denger K, Cook AM (1997a) Fermentation of cysteate by a sulfate-reducing bacterium. Arch Microbiol 168:210–214

    Article  CAS  Google Scholar 

  • Laue H, Denger K, Cook AM (1997b) Taurine reduction in anaerobic respiration ofBilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021

    PubMed  CAS  Google Scholar 

  • Laue H, Friedrich M, Ruff J, Cook AM (2001) Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacteriumBilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol 183:1727–1733

    Article  PubMed  CAS  Google Scholar 

  • Lie TJ, Pitta T, Leadbetter ER, Godchaux W III, Leadbetter JR (1996) Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol 166:204–210

    Article  PubMed  CAS  Google Scholar 

  • Lie TL, Leadbetter JR, Leadbetter ER (1998) Metabolism of sulfonic acids and other organosuifur compounds by sulfate-reducing bacteria. Geomicrobiol J 15:135–149

    Article  CAS  Google Scholar 

  • Lie TJ, Clawson ML, Godchaux W, Leadbetter ER (1999a) Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium,Desulforhopalus singaporensis sp. nov. Appl Environ Microbiol 65:3328–3334

    PubMed  CAS  Google Scholar 

  • Lie TJ, Godchaux W, Leadbetter ER (1999b) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria(Desulfitobacterium spp) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol 65: 4611–4617

    PubMed  CAS  Google Scholar 

  • Martelli HL, Sousa SM (1970) Biochemistry of sulfonic compounds. III. Formation of a two-carbon compound during the oxidation of sulfoacetate by aPseudomonas strain. Biochim Biophys Acta 208:110–115

    PubMed  CAS  Google Scholar 

  • Masepohl B, Fiihrer F, Klipp W (2001) Genetic analysis of aRhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol Lett 205:105–111

    Article  PubMed  CAS  Google Scholar 

  • Metzler DE (2001) Biochemistry: the chemical reactions of living cells, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Mikosch C, Denger K, Schafer E-M, Cook AM (1999) Anaerobic oxidations of cysteate: degradation via a cysteate:2-oxoglutarate aminotransferase inParacoccus pantotrophus. Microbiology 145:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • O’Neil MJ (2001) International nonproprietary names (INN) for radicals and groups proposed for pharmaceutical substances by the World Health Organization (Table). In: O’Neil (ed) The Merck Index, 13th edn. Merck, Whitehorse Station, N.J., p. misc-22

    Google Scholar 

  • Paramasigamani K (1984) Simple sulfur compounds. In: Laskin AI, Lechevalier HA (eds) Handbook of microbiology, vol 5, 2nd edn. CRC Press, Boca Raton, pp 111–113

    Google Scholar 

  • Ploeg JR van der, Eichhorn E, Leisinger T (2001) Sulfonate-sulfur metabolism and its regulation inEscherichia coli. Arch Microbiol 176:1–8

    Article  PubMed  Google Scholar 

  • Ruff J, Denger K, Cook AM (2002) Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification fromAlcaligenes defragrans and sene clusters in taurine degradation. Biochem J: DOI 10.1042/BJ20021455

  • Shimamoto G, Berk RS (1979) Catabolism of taurine inPseudomonas aeruginosa. Biochim Biophys Acta 569:287–292

    PubMed  CAS  Google Scholar 

  • Shimamoto G, Berk RS (1980) Taurine catabolism II. Biochemical and genetic evidence for sulfoacetaldehyde sulfolyase involvement. Biochim Biophys Acta 632:121–130

    PubMed  CAS  Google Scholar 

  • Stapley EO, Starkey RL (1970) Decomposition of cysteic acid and taurine by soil microorganisms. J Gen Microbiol 64:77–84

    CAS  Google Scholar 

  • Toyama S, Miyasato K, Yasuda M, Soda K (1973) Occurrence of taurine-pyruvate aminotransferase in bacterial extract. Agric Biol Chem 37:2939–2941

    CAS  Google Scholar 

  • Visscher PT, Gritzer RF, Leadbetter ER (1999) Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl Environ Microbiol 65:3272–3278

    PubMed  CAS  Google Scholar 

  • Yonaha K, Nishie M, Aibara S (1992) The primary structure of ω-amino acid:pyruvate aminotransferase. J Biol Chem 267:12506–12510

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alasdair M. Cook.

Additional information

Published online: 7 November 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, A.M., Denger, K. Dissimilation of the C2 sulfonates. Arch Microbiol 179, 1–6 (2002). https://doi.org/10.1007/s00203-002-0497-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0497-0

Keywords

Navigation