Skip to main content
Log in

Abstract

Product miniaturization is an emerging trend for facilitating product usage, enabling unique product functions to be implemented in micro-scaled geometries and features, and further reducing product weight and volume. Recently, a demand for microparts increased significantly in many industry clusters. Development of the advanced micromanufacturing technologies for fabrication of such microparts has thus become a critical issue. Microforming, which offers attractive characteristics including high productivity, low cost and good quality of the formed parts, provides a promising approach to fabricating metallic microparts. In the last two decades, a lot of effort has been made to the researches on size effect related deformation behaviors in microforming process and the development of the process. Having a panorama of these researches is necessary to support micropart design and development via microforming, and further advance this micromanufacturing process. In this paper, an intensive review on the latest development of microforming technologies is presented. First of all, the paper is focused on the review of the size effect-affected deformation behaviors and the mechanisms of the changes of flow stress, flow behavior, fracture behavior, elastic recovery, tooling–workpiece interfacial friction and the surface finish of the formed parts. The state-of-the-art microforming processes, including micro deep drawing, microembossing, micropunching, microcoining, microextrusion, microheading, and micro progressive forming are then presented. Finally, some research issues from the implementation of mass production perspective are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng Y, Shew BY, Lin CY, Wei DH, Chyu MK (1999) Ultra-deep LIGA process. J Micromech Microeng 9(1):58–63

    Article  Google Scholar 

  2. Yang H, Pan CT, Chou MC (2001) Ultra-fine machining tool/molds by LIGA technology. J Micromech Microeng 11(2):94–99

    Article  Google Scholar 

  3. Masuzawa T State of the art of micromachining (2000) 50th General Assembly of CIRP. Hallwag, Sydney, Australia, pp 473–488

    Google Scholar 

  4. Giboz J, Copponnex T, Mele P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17(6):R96–R109. doi:10.1088/0960-1317/17/6/R02

    Article  Google Scholar 

  5. Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3):R1–R14

    Article  Google Scholar 

  6. Giboz J, Copponnex T, Mele P (2009) Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding. J Micromech Microeng 19 (2). doi:10.1088/0960-1317/19/2/025023

  7. Piotter V, Benzler T, Gietzelt T, Ruprecht R, Hausselt J (2000) Micro powder injection molding. Adv Eng Mater 2(10):639–642

    Article  Google Scholar 

  8. Zauner R (2006) Micro powder injection moulding. Microelectron Eng 83(4–9):1442–1444. doi:10.1016/j.mee.2006.01.170

    Article  Google Scholar 

  9. Fu G, Tor S, Loh N, Tay B, Hardt DE (2007) A micro powder injection molding apparatus for high aspect ratio metal micro-structure production. J Micromech Microeng 17(9):1803–1809. doi:10.1088/0960-1317/17/9/008

    Article  Google Scholar 

  10. Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50(2):445–462

    Article  Google Scholar 

  11. Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125:35–44

    Article  Google Scholar 

  12. Fu MW, Li H, Lu J, Lu SQ (2009) Numerical study on the deformation behaviors of the flexible die forming by using viscoplastic pressure-carrying medium. Comput Mater Sci 46(4):1058–1068. doi:10.1016/j.commatsci.2009.05.013

    Article  Google Scholar 

  13. Fu MW, Lu J, Chan WL (2009) Die fatigue life improvement through the rational design of metal-forming system. J Mater Process Technol 209(2):1074–1084. doi:10.1016/j.jmatprotec.2008.03.016

    Article  Google Scholar 

  14. Fu MW, Yong MS, Muramatsu T (2008) Die fatigue life design and assessment via CAE simulation. Int J Adv Manuf Technol 35(9–10):843–851. doi:10.1007/s00170-006-0762-5

    Article  Google Scholar 

  15. Fu MW, Yong MS, Tong KK, Danno A (2008) Design solution evaluation for metal forming product development. Int J Adv Manuf Technol 38(3–4):249–257. doi:10.1007/s00170-007-1091-z

    Article  Google Scholar 

  16. Fu MW, Yong MS, Tong KK, Muramatsu T (2006) A methodology for evaluation of metal forming system design and performance via CAE simulation. Int J Prod Res 44(6):1075–1092. doi:10.1080/00207540500337643

    Article  Google Scholar 

  17. Chan WL, Fu MW, Lu J (2010) FE Simulation-based folding defect prediction and avoidance in forging of axially symmetrical flanged components. J. Manuf. Sci. Eng. Trans. ASME 132 (5). doi:10.1115/1.4002188

  18. Chan WL, Fu MW, Lu J, Chan LC (2009) Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. J Mater Process Technol 209(11):5077–5086. doi:10.1016/j.jmatprotec.2009.02.005

    Article  Google Scholar 

  19. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58(2):566–587. doi:10.1016/j.cirp.2009.09.002

    Article  Google Scholar 

  20. Messner A, Engel U, Kals R, Vollertsen F (1994) Size effect in the fe-simulation of micro-forming processes. J Mater Process Technol 45(1–4):371–376

    Article  Google Scholar 

  21. Vollertsen F, Hu Z, Niehoff HS, Theiler C (2004) State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151(1–3):70–79. doi:10.1016/j.jmatprotec.2004.04.266

    Article  Google Scholar 

  22. Baek SW, Oh SI, Rhim SH (2006) Lubrication for micro forming of ultra thin metal foil. CIRP Ann Manuf Technol 55(1):295–298

    Article  Google Scholar 

  23. Engel U (2006) Tribology in microforming. Wear 260(3):265–273. doi:10.1016/j.wear.2005.04.021

    Article  Google Scholar 

  24. Vollertsen F, Hu Z (2006) Tribological size effects in sheet metal forming measured by a strip drawing test. CIRP Ann Manuf Technol 55(1):291–294

    Article  Google Scholar 

  25. Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2010) Friction behavior modeling and analysis in micro/meso scale metal forming process. Mater Des 31(4):1953–1961. doi:10.1016/j.matdes.2009.10.040

    Article  Google Scholar 

  26. Guo B, Gong F, Wang CJ, Shan DB (2010) Size effect on friction in scaled down strip drawing. J Mater Sci 45(15):4067–4072. doi:10.1007/s10853-010-4492-6

    Article  Google Scholar 

  27. Rosochowski A, Presz W, Olejnik L, Richert M (2007) Micro-extrusion of ultra-fine grained aluminium. Int J Adv Manuf Technol 33(1–2):137–146. doi:10.1007/s00170-007-0955-6

    Article  Google Scholar 

  28. Siopis MS, Kinsey BL (2010) Experimental investigation of grain and specimen size effects during electrical-assisted forming. J Manuf Sci Eng Trans ASME 132 (2). doi:10.1115/1.4001039

  29. Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47(1–4):53–61. doi:10.1007/s00170-008-1851-4

    Article  Google Scholar 

  30. Shan DB, Wang CJ, Guo B, Wang XW (2009) Effect of thickness and grain size on material behavior in micro-bending. Trans Nonferrous Met Soc China 19:S507–S510

    Article  Google Scholar 

  31. Wang CJ, Shan DB, Zhou J, Guo B, Sun LN (2007) Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol 187:256–259. doi:10.1016/j.jmatprotec.2006.11.055

    Article  Google Scholar 

  32. Ike H, Plancak M (1998) Coining process as a means of controlling surface microgeometry. J Mater Process Technol 80–1:101–107

    Article  Google Scholar 

  33. Ike H (2003) Surface deformation vs. bulk plastic deformation—a key for microscopic control of surfaces in metal forming. J Mater Process Technol 138(1–3):250–255. doi:10.1016/S0924-0136(03)00080-3

    Article  Google Scholar 

  34. Ma X, Lapovok R, Gu C, Molotnikov A, Estrin Y, Pereloma EV, Davies CHJ, Hodgson PD (2009) Deep drawing behaviour of ultrafine grained copper: modelling and experiment. J Mater Sci 44(14):3807–3812. doi:10.1007/s10853-009-3515-7

    Article  Google Scholar 

  35. Raulea LV, Goijaerts AM, Govaert LE, Baaijens FPT (2001) Size effects in the processing of thin metal sheets. J Mater Process Technol 115(1):44–48

    Article  Google Scholar 

  36. Egerer E, Engel U (2004) Process characterization and material flow in microforming at elevated temperatures. J Manuf Process 6(1):1–6

    Article  Google Scholar 

  37. Mirzai MA, Manabe KI, Mabuchi T (2008) Deformation characteristics of microtubes in flaring test. J Mater Process Technol 201(1–3):214–219

    Article  Google Scholar 

  38. Joo BY, Oh SI, Son YK (2004) Forming of micro channels with ultra thin metal foils. CIRP Ann Manuf Technol 53(1):243–246

    Article  Google Scholar 

  39. Gau JT, Principe C, Yu M (2007) Springback behavior of brass in micro sheet forming. J Mater Process Technol 191(1–3):7–10

    Article  Google Scholar 

  40. Chen CC, Jiang CP (2011) Grain size effect in the micro-V-bending process of thin metal sheets. Mater Manuf Process 26(1):78–83. doi:10.1080/10426911003636910

    Article  Google Scholar 

  41. Fu MH, Chan KC, Lee WB, Chan LK (1997) Springback in the roller forming of integrated circuit leadframes. J Mater Process Technol 66(1–3):107–111

    Article  Google Scholar 

  42. Parasiz SA, Kinsey B, Krishnan N, Cao J, Li M (2007) Investigation of deformation size effects during microextrusion. J Manuf Sci Eng Trans ASME 129(4):690–697

    Article  Google Scholar 

  43. Parasiz SA, VanBenthysen R, Kinsey BL (2010) Deformation size effects due to specimen and grain size in microbending. J Manuf Sci Eng Trans ASME 132 (1):011018. doi:10.1115/1.4000943

  44. Manabe K, Shimizu T, Koyama H, Yang M, Ito K (2008) Validation of FE simulation based on surface roughness model in micro-deep drawing. J Mater Process Technol 204(1–3):89–93

    Article  Google Scholar 

  45. Wang CJ, Guo B, Shan DB (2009) Effect of die cavity dimension on micro U deep drawing behaviour with T2 foil. Trans Nonferrous Met Soc China 19:S790–S794

    Article  Google Scholar 

  46. Geißdörfer S, Engel U, Geiger M (2006) FE-simulation of microforming processes applying a mesoscopic model. Int J Mach Tools Manuf 46(11):1222–1226

    Article  Google Scholar 

  47. Mahabunphachai S, Koc M (2008) Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tools Manuf 48(9):1014–1029. doi:10.1016/j.ijmachtools.2008.01.006

    Article  Google Scholar 

  48. Cao J, Krishnan N, Wang Z, Lu HS, Liu WK, Swanson A (2004) Microforming: experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. J Manuf Sci Eng Trans ASME 126(4):642–652. doi:10.1115/1.1813468

    Article  Google Scholar 

  49. Hu Z (2011) Realisation and application of size dependent FEM-simulation for deep drawing of rectangular work pieces. CIRP J Manuf Sci Technol 4(1):90–95

    Article  Google Scholar 

  50. Wang GC, Zheng W, Wu T, Jiang H, Zhao GQ, Wei DB, Jiang ZY (2012) A multi-region model for numerical simulation of micro bulk forming. J Mater Process Technol 212(3):678–684

    Article  Google Scholar 

  51. Geiger M, Geißdörfer S, Engel U (2007) Mesoscopic model: advanced simulation of microforming processes. Prod Eng 1(1):79–84. doi:10.1007/s11740-007-0034-8

    Article  Google Scholar 

  52. Jeon J, Bramley AN (2007) A friction model for microforming. Int J Adv Manuf Technol 33(1–2):125–129. doi:10.1007/s00170-006-0608-1

    Article  Google Scholar 

  53. Chan WL, Fu MW, Lu J, Liu JG (2010) Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. MaterSci Eng A: Struct 527(24–25):6638–6648

    Article  Google Scholar 

  54. Simons G, Weippert C, Dual J, Villain J (2006) Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng A: Struct 416(1–2):290–299. doi:10.1016/j.msea.2005.10.060

    Article  Google Scholar 

  55. Weiss B, Groger V, Khatibi G, Kotas A, Zimprich P, Stickler R, Zagar B (2002) Characterization of mechanical and thermal properties of thin Cu foils and wires. Sens Actuator A-Phys 99(1–2):172–182

    Article  Google Scholar 

  56. Khatibi G, Betzwar-Kotas A, Groger V, Weiss B (2005) A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract Eng Mater Struct 28(8):723–733. doi:10.1111/j.1460-2695.2005.00898.x

    Article  Google Scholar 

  57. Khatibi G, Mingler B, Schafler E, Stickler R, Weiss B (2005) Microcharacterization of thin copper and aluminium bond wires. BHM Berg- und Hüttenmännische Monatshefte 150(5):176–180. doi:10.1007/bf03165318

    Article  Google Scholar 

  58. Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des 32(10):4738–4746

    Article  Google Scholar 

  59. Ran JQ, Fu MW, Chan WL (2012) The influence of size effect on the ductile fracture in micro-scaled plastic deformation. Int J Plast. In press

  60. Eichenhueller B, Egerer E, Engel U (2007) Microforming at elevated temperature—forming and material behaviour. Int J Adv Manuf Technol 33(1–2):119–124. doi:10.1007/s00170-006-0731-z

    Article  Google Scholar 

  61. Liu JG, Fu MW, Lu J, Chan WL (2011) Influence of size effect on the springback of sheet metal foils in micro-bending. Comput Mater Sci 50(9):2604–2614

    Article  Google Scholar 

  62. Chan WL, Fu MW, Yang B (2012) Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process. Mater Sci Eng A: Struct 534:374–383

    Article  Google Scholar 

  63. Chan WL, Fu MW (2012) Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A: Struct 556:60–67

    Article  Google Scholar 

  64. Chan WL, Fu MW (2012) Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol 212(7):1501–1512

    Article  Google Scholar 

  65. Qin Y (2006) Micro-forming and miniature manufacturing systems—development needs and perspectives. J Mater Process Technol 177(1–3):8–18. doi:10.1016/j.jmatprotec.2006.03.212

    Article  Google Scholar 

  66. Arentoft M, Eriksen RS, Hansen HN, Paldan NA (2011) Towards the first generation micro bulk forming system. CIRP Ann Manuf Technol 60(1):335–338. doi:10.1016/j.cirp.2011.03.140

    Article  Google Scholar 

  67. Qin Y (2010) Micro-manufacturing engineering and technology. 1st edn. William Andrew, Oxford [England]

    Google Scholar 

  68. Chan WL, Fu MW (2012) Studies of the interactive effect of specimen and grain sizes on the plastic deformation behavior in microforming. Int J Adv Manuf Technol 62(9):989–1000. doi:10.1007/s00170-011-3869-2

    Article  Google Scholar 

  69. Geiger M, Vollertsen F, Kals R (1996) Fundamentals on the manufacturing of sheet metal microparts. CIRP Ann Manuf Technol 45(1):277–282

    Article  Google Scholar 

  70. Geiger M, Meßner A, Engel U (1997) Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng 4(1):55–58

    Google Scholar 

  71. Barbier C, Thibaud S, Richard F, Picart P (2009) Size effects on material behavior in microforming. Int J Mater Form 2:625–628

    Article  Google Scholar 

  72. Raulea LV, Govaert LE, Baaijens FPT (1999) Sixth International Conference on Technology of Plasticity. In: Geiger M (ed) Grain and specimen size effects in processing metal sheets. Springer, Nuremberg, pp 939–944

    Google Scholar 

  73. Chen FK, Tsai JW (2006) A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol 177(1–3):146–149. doi:10.1016/j.jmatprotec.2006.04.115

    Article  MathSciNet  Google Scholar 

  74. Chan WL, Fu MW, Lu J (2011) The size effect on micro deformation behaviour in micro-scale plastic deformation. Mater Des 32(1):198–206

    Article  Google Scholar 

  75. Vollertsen F, Niehoff HS, Hu Z (2006) State of the art in micro forming. Int J Mach Tools Manuf 46(11):1172–1179

    Article  Google Scholar 

  76. Van Swygenhoven H, Spaczer M, Caro A (1999) Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater 47(10):3117–3126

    Article  Google Scholar 

  77. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29

    Article  Google Scholar 

  78. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563

    Article  Google Scholar 

  79. Kim GY, Ni J, Koc M (2007) Modeling of the size effects on the behavior of metals in microscale deformation processes. J Manuf Sci Eng Trans ASME 129(3):470–476. doi:10.1115/1.2714582

    Article  Google Scholar 

  80. Hug E, Keller C (2010) Intrinsic effects due to the reduction of thickness on the mechanical behavior of nickel polycrystals. Metall Mater Trans A-Phys Metall Mater Sci 41A(10):2498–2506. doi:10.1007/s11661-010-0286-3

    Article  Google Scholar 

  81. Miyazaki S, Shibata K, Fujita H (1979) Effect of specimen thickness on mechanical-properties of polycrystalline aggregates with various grain sizes. Acta Metall 27(5):855–862

    Article  Google Scholar 

  82. Kals R, Pucher HJ, Vollertsen F (1995) In: Hashmi SJ (ed) Effects of specimen size and geometry in metal forming. 2nd International Conference on Advances in Materials and Processing Technologies, Dublin, pp 1288–1297

    Google Scholar 

  83. Shen Y, Yu HP, Ruan XY (2006) Discussion and prediction on decreasing flow stress scale effect. Trans Nonferrous Met Soc China 16(1):132–136

    Article  Google Scholar 

  84. Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2009) Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater Sci Eng A: Struct 526(1–2):93–99. doi:10.1016/j.msea.2009.06.061

    Article  Google Scholar 

  85. Peng LF, Liu F, Ni J, Lai XM (2007) Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des 28(5):1731–1736. doi:10.1016/j.matdes.2006.02.011

    Article  Google Scholar 

  86. Lai XM, Peng LF, Hu P, Lan SH, Ni J (2008) Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Comput Mater Sci 43(4):1003–1009

    Article  Google Scholar 

  87. Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A: Struct 528(25–26):7674–7683

    Article  Google Scholar 

  88. Wang S, Zhuang W, Balint D, Lin J (2009) A virtual crystal plasticity simulation tool for micro-forming. Mesomech 1(1):75–78. doi:10.1016/j.proeng.2009.06.020

    Google Scholar 

  89. Zhuang W, Lin J (2008) An integrated micromechanics modelling approach for micro-forming simulation. Int J Mod Phys B 22(31–32):5907–5912

    Article  Google Scholar 

  90. Zhuang W, Lin J (2009) An integrated micromechanics modeling approach for micro-forming simulation. World Scientific, Singapore

    Google Scholar 

  91. Zhuang W, Wang S, Cao J, Lin J, Hartl C (2010) Modelling of localised thinning features in the hydroforming of micro-tubes using the crystal-plasticity FE method. Int J Adv Manuf Technol 47(9–12):859–865. doi:10.1007/s00170-009-2134-4

    Article  Google Scholar 

  92. Klein M, Hadrboletz A, Weiss B, Khatibi G (2001) The 'size effect' on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng A: Struct 319:924–928

    Article  Google Scholar 

  93. Hansen N (1977) The effect of grain-size and strain on tensile flow-stress of aluminum at room-temperature. Acta Metall 25(8):863–869

    Article  Google Scholar 

  94. Henning M, Vehoff H (2007) Statistical size effects based on grain size and texture in thin sheets. Mater Sci Eng A: Struct 452:602–613. doi:10.1016/j.msea.2006.11.113

    Article  Google Scholar 

  95. Justinger H, Hirt G (2009) Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations. J Mater Process Technol 209(4):2111–2121. doi:10.1016/j.jmatprotec.2008.05.008

    Article  Google Scholar 

  96. Tiesler N, Engel U, Geiger M Forming of microparts—effects of miniaturization on friction. In: 6th International Conference on Technology of Plasticity, 1999. pp 889–894

  97. Tiesler N (2002) Microforming-size effects in friction and their influence on extrusion processes. Wire 52:34–38

    Google Scholar 

  98. Deng JH, Fu MW, Chan WL (2011) Size effect on material surface deformation behavior in micro-forming process. Mater Sci Eng A: Struct 528(13–14):4799–4806

    Article  Google Scholar 

  99. Krishnan N, Cao J, Dohda K (2007) Study of the size effects on friction conditions in microextrusion—part I: microextrusion experiments and analysis. J Manuf Sci Eng Trans ASME 129(4):669–676

    Article  Google Scholar 

  100. Geiger M, Messner A, Engel U, Kals R, Vollertsen F Design of micro-forming processes—fundamentals, material data and friction behaviour. In: 9th Inter-national Cold Forging Congress, 1995. pp 155–164

  101. Mori LF, Krishnan N, Cao J, Espinosa HD (2007) Study of the size effects and friction conditions in microextrusion—part II: size effect in dynamic friction for brass-steel pairs. J Manuf Sci Eng Trans ASME 129(4):677–689

    Article  Google Scholar 

  102. Chen GN, Shen H, Hu SU, Baudelet B (1990) Roughening of the free surfaces of metallic sheets during stretch forming. Mater Sci Eng A: Struct 128(1):33–38

    Article  Google Scholar 

  103. Chandrasekaran D, Nygards M (2003) A study of the surface deformation behaviour at grain boundaries in an ultra-low-carbon steel. Acta Mater 51(18):5375–5384. doi:10.1016/S1359-6454(03)00394-X

    Article  Google Scholar 

  104. Bretheau T, Caldemaison D (1981) 2nd Risø International Symposium on Metallurgy and Materials Science. In: Hansen N, Horsewell A, Leffers T, Lilholt H (eds) Test of mechanical interaction models between polycrystal grains by means of local strain measurements. Risø National Laboratory, Denmark, pp 157–161

    Google Scholar 

  105. Urie VM, Wain HL (1952) Plastic deformation of coarse-grained aluminum. J Inst Met 81:153–159

    Google Scholar 

  106. Barlow CYJ, Bay B, Hansen N (1985) A comparative investigation of surface relief structures and dislocation microstructures in cold-rolled aluminum. Philos Mag A 51(2):253–275

    Google Scholar 

  107. Beaudoin AJ, Acharya A, Chen SR, Korzekwa DA, Stout MG (2000) Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals. Acta Mater 48(13):3409–3423

    Article  Google Scholar 

  108. Hurley PJ, Humphreys FJ (2003) The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy. Acta Mater 51(4):1087–1102. doi:10.1016/S1359-6454(02)00513-X

    Article  Google Scholar 

  109. Wu PD, Lloyd DJ (2004) Analysis of surface roughening in AA6111 automotive sheet. Acta Mater 52(7):1785–1798. doi:10.1016/j.actamat.2003.12.039

    Article  Google Scholar 

  110. Wilson DV, Roberts WT, Rodrigues PMB (1981) Effects of grain anisotropy on limit strains in biaxial stretching. 2. Sheets of cubic metals and alloys with well-developed preferred orientations. Metall Trans A 12(9):1603–1611

    Article  Google Scholar 

  111. Osakada K, Oyane M (1971) On the roughening of free surface in deformation processes. Bulletin of JSME 14(68):171–177

    Article  Google Scholar 

  112. Hu Z, Schubnov A, Vollertsen F (2012) Tribological behaviour of DLC-films and their application in micro deep drawing. J Mater Process Technol 212(3):647–652

    Article  Google Scholar 

  113. Gong F, Guo B, Wang C, Shan D (2010) Effects of lubrication conditions on micro deep drawing. Microsyst Technol 16(10):1741–1747. doi:10.1007/s00542-010-1108-7

    Article  Google Scholar 

  114. Saotome Y, Yasuda K, Kaga H (2001) Microdeep drawability of very thin sheet steels. J Mater Process Technol 113(1–3):641–647

    Article  Google Scholar 

  115. Vollertsen F, Hu Z (2010) Analysis of punch velocity dependent process window in micro deep drawing. Prod Eng 4(6):553–559. doi:10.1007/s11740-010-0241-6

    Article  Google Scholar 

  116. Hu Z, Wielage H, Vollertsen F (2010) Effect of strain rate on the forming limit diagram of thin aluminum foil. International Forum on Micro Manufacturing Gifu, Japan

    Google Scholar 

  117. Chen CH, Gau JT, Lee RS (2009) An experimental and analytical study on the limit drawing ratio of stainless steel 304 foils for microsheet forming. Mater Manuf Process 24(12):1256–1265. doi:10.1080/10426910903129786

    Article  Google Scholar 

  118. Fu MW, Chan WL , Yang B (2011) Study of size effects on material deformation behaviour in micro-deep drawing of copper sheet metal. Steel Res Int (Special Edition):985–990

  119. Fu MW, Yang B, Chan WL (2013) Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet. J Mater Process Technol 213(1):101–110

    Article  Google Scholar 

  120. Dai YZ, Chiang FP (1992) On the mechanism of plastic-deformation induced surface-roughness. J Eng Mater Technol Trans ASME 114(4):432–438

    Article  Google Scholar 

  121. Wilson WRD, Lee WM (2001) Mechanics of surface roughening in metal forming processes. J Manuf Sci Eng Trans ASME 123(2):279–283

    Article  Google Scholar 

  122. Manabe K, Shimizu T, Koyama H (2007) Evaluation of milli-scale cylindrical cup in two-stage deep drawing process. J Mater Process Technol 187:245–249. doi:10.1016/j.jmatprotec.2006.11.164

    Article  Google Scholar 

  123. Mahabunphachai S, Cora ON, Koc M (2010) Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. J Power Sources 195(16):5269–5277. doi:10.1016/j.jpowsour.2010.03.018

    Article  Google Scholar 

  124. Turan C, Cora ON, Koc M (2011) Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells. Int J Hydrog Energy 36(19):12370–12380. doi:10.1016/j.ijhydene.2011.06.091

    Article  Google Scholar 

  125. Thiruvarudchelvan S, Tan MJ (2004) The drawing of conical cups using an annular urethane pad. J Mater Process Technol 147(2):163–166. doi:10.1016/j.matprotec.2003.12.011

    Article  Google Scholar 

  126. Thiruvarudchelvan S, Sritharan T (2003) Properties of hemispherical cups drawn using a flexible tool. J Mater Process Technol 134(3):310–317. doi:10.1016/S0924-0136(02)01115-9

    Article  Google Scholar 

  127. Thiruvarudchelvan S (2002) The potential role of flexible tools in metal forming. J Mater Process Technol 122(2–3):293–300

    Article  Google Scholar 

  128. Dirikolu AH, Akdemir E (2004) Computer aided modelling of flexible forming process. J Mater Process Technol 148(3):376–381. doi:10.1016/j.jmatprotec.2004.02.049

    Article  Google Scholar 

  129. Ramezani M, Ripin ZM, Ahmad R (2010) Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation. CIRP J Manuf Sci Technol 3(3):196–203

    Article  Google Scholar 

  130. Fu MW, Lu SQ, Huang MH (1996) High-precision sheet-metal workpieces manufactured by flexible-die forming using a viscoplastic pressure-carrying medium. J Mater Process Technol 62(1–3):70–75. doi:10.1016/S0924-0136(97)80001-T

    Article  Google Scholar 

  131. Fu MW, Huang MH (2001) Process parameters and products quality analysis of flexible-die deep-drawing using a viscoplastic pressure-carrying medium. J Mater Process Technol 115(3):384–390. doi:10.1016/S0924-0136(01)01012-3

    Article  MathSciNet  Google Scholar 

  132. Liu YX, Hua L (2010) Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming. J Power Sources 195(11):3529–3535. doi:10.1016/j.jpowsour.2009.12.046

    Article  Google Scholar 

  133. Liu YX, Hua L, Lan JA, Wei X (2010) Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates. J Power Sources 195(24):8177–8184. doi:10.1016/j.jpowsour.2010.06.078

    Article  Google Scholar 

  134. Peng LF, Hu P, Lai XM, Mei DQ, Ni J (2009) Investigation of micro/meso sheet soft punch stamping process—simulation and experiments. Mater Des 30(3):783–790. doi:10.1016/j.matdes.2008.05.074

    Article  Google Scholar 

  135. Joo BY, Rhim SH, Oh SI (2005) Micro-hole fabrication by mechanical punching process. J Mater Process Technol 170(3):593–601. doi:10.1016/j.jmatprotec.2005.06.038

    Article  Google Scholar 

  136. Kals TA, Eckstein R (2000) Miniaturization in sheet metal working. J Mater Process Technol 103(1):95–101

    Article  Google Scholar 

  137. Joo BY, Oh SI, Jeon BH (2001) Development of micro punching system. CIRP Ann Manuf Technol 50(1):191–194

    Article  Google Scholar 

  138. Rhim SH, Son YK, Oh SI (2005) Punching of ultra small size hole array. CIRP Ann Manuf Technol 54(1):261–264

    Article  Google Scholar 

  139. Kim GY, Koc M, Ni J (2008) Experimental and numerical investigations on microcoining of stainless steel 304. J Manuf Sci Eng Trans ASME 130 (4):041017. doi:10.1115/1.2953235

  140. Kim G-Y, Koc M, Ni J (2006) Investigation on coining of micro-features using pure copper. ASME Conference Proceedings 47624:277–283

    Google Scholar 

  141. Kalpakjian S, Schmid SR (2003) Manufacturing processes for engineering materials, 4th edn. Prentice Hall, Upper Saddle River, N.J

    Google Scholar 

  142. Takatsuji N, Hosokawa S, Dohda K, Makino T (2010) Influence of friction behavior on forming of micro-parts by forward–backward extrusion of 6063 aluminum alloy. International Forum on Micro Manufacturing Gifu, Japan

    Google Scholar 

  143. Nakamura T, Bay N, Zhang ZL (1997) FEM simulation of friction testing method based on combined forward rod–backward can extrusion. J Tribol Trans ASME 119(3):501–506

    Article  Google Scholar 

  144. Chan WL, Fu MW, Lu J (2011) Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater Des 32(2):525–534. doi:10.1016/j.matdes.2010.08.032

    Article  Google Scholar 

  145. Chan WL, Fu MW, Yang B (2011) Study of size effect in micro-extrusion process of pure copper. Mater Des 32(7):3772–3782

    Article  Google Scholar 

  146. Bakhshi-Koybari M (2002) A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process. J Mater Process Technol 125:369–374

    Article  Google Scholar 

  147. Wagener HW, Wolf J (1994) Coefficient of friction in cold-extrusion. J Mater Process Technol 44(3–4):283–291

    Article  Google Scholar 

  148. Depierre V (1970) Experimental measurement of forces during extrusion and correlation with theory. J Lub Technol 92(3):398–405

    Article  Google Scholar 

  149. Zhang Q, Arentoft M, Bruschi S, Dubar L, Felder E (2008) Measurement of friction in a cold extrusion operation: study by numerical simulation of four friction tests. Int J Mater Form 1:1267–1270. doi:10.1007/s12289-008-0133-x

    Article  Google Scholar 

  150. ASM International. Handbook Committee (1990) ASM handbook, 10th edn. ASM International, Materials Park, OH

    Google Scholar 

  151. Schrader T, Shirgaokar M, Altan T (2007) A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. J Mater Process Technol 189(1–3):36–44. doi:10.1016/j.jmatprotec.2006.11.229

    Article  Google Scholar 

  152. Chinesta F, Cueto E, Engel U, Rosochowski A, Geißdörfer S, Olejnik L (2007) Microforming and nanomaterials. Advances in Material Forming. Springer, Paris, pp 99–124. doi:10.1007/978-2-287-72143-4_7

    Google Scholar 

  153. Fu MW, Tham YW, Hng HH, Lim KB (2009) The grain refinement of Al-6061 via ECAE processing: deformation behavior, microstructure and property. Mater Sci Eng A: Struct 526(1–2):84–92. doi:10.1016/j.msea.2009.08.021

    Article  Google Scholar 

  154. Kim WJ, Sa YK (2006) Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Mater 54(7):1391–1395

    Article  Google Scholar 

  155. Eichenhüller B, Engel U, Geißdörfer S (2008) Process parameter interaction in microforming. Int J Mater Form 1:451–454. doi:10.1007/s12289-008-0092-2

    Article  Google Scholar 

  156. Jimma T, Kasuga Y, Iwaki N, Miyazawa O, Mori E, Ito K, Hatano H (1998) An application of ultrasonic vibration to the deep drawing process. J Mater Process Technol 80–1:406–412

    Article  Google Scholar 

  157. Siegert K, Ulmer J (2001) Superimposing ultrasonic waves on the dies in tube and wire drawing. J Eng Mater Technol Trans ASME 123(4):517–523

    Article  Google Scholar 

  158. Murakawa M, Jin M (2001) The utility of radially and ultrasonically vibrated dies in the wire drawing process. J Mater Process Technol 113(1–3):81–86

    Article  Google Scholar 

  159. Mousavi SAAA, Feizi H, Madoliat R (2007) Investigations on the effects of ultrasonic vibrations in the extrusion process. J Mater Process Technol 187:657–661. doi:10.1016/j.jmatprotec.2006.11.168

    Article  Google Scholar 

  160. Hung JC, Tsai YC, Hung CH (2007) Frictional effect of ultrasonic-vibration on upsetting. Ultrasonics 46(3):277–284. doi:10.1016/j.ultras.2007.03.003

    Article  Google Scholar 

  161. Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51(5):606–616. doi:10.1016/j.ultras.2011.01.001

    Article  Google Scholar 

  162. Yao Z, Kim G-Y, Faidley L, Zou Q, Mei D, Chen Z (2012) Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J Mater Process Technol 212(3):640–646

    Article  Google Scholar 

  163. Chan WL, Fu MW (2013) Meso-scaled progressive forming of bulk cylindrical and flanged parts using sheet metal. Mater Des 43:249–257

    Article  Google Scholar 

  164. Hirota K (2007) Fabrication of micro-billet by sheet extrusion. J Mater Process Technol 191(1–3):283–287. doi:10.1016/j.jmatprotec.2007.03.024

    Article  Google Scholar 

  165. Atsushi D, Wong CC, Lim SCV, Aue-u-lan Y, Chew MQ (2010) Capability development of progressive extrusion forming of hollow miniature/micro pin form sheet. International Forum on Micro Manufacturing Gifu, Japan, pp 241–246

    Google Scholar 

  166. Lim SCV, Atsushi D, Chew MQ (2010) Effect of punch size and annealing on the progressive forming of micro-pin from a sheet metal. International Forum on Micro Manufacturing Gifu, Japan, pp 11–14

    Google Scholar 

  167. Hambli R (2002) Design of experiment based analysis for sheet metal blanking processes optimisation. Int J Adv Manuf Technol 19(6):403–410

    Article  Google Scholar 

  168. Taupin E, Breitling J, Wu WT, Altan T (1996) Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments. J Mater Process Technol 59(1–2):68–78

    Article  Google Scholar 

  169. Ko DC, Kim BM, Choi JC (1997) Finite-element simulation of the shear process using the element-kill method. J Mater Process Technol 72(1):129–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, M.W., Chan, W.L. A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67, 2411–2437 (2013). https://doi.org/10.1007/s00170-012-4661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4661-7

Keywords

Navigation