Skip to main content
Log in

Pharmakologische Aspekte therapeutischer Botulinum-Toxin-Präparationen

Pharmacological aspects of therapeutic botulinum toxin preparations

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Therapeutische Präparationen von Botulinum-Toxin (BT) bestehen aus Botulinum-Neurotoxin (BNT), Komplexproteinen und pharmazeutischen Hilfsstoffen. Je nach Zielgewebe kann BT die cholinerge neuromuskuläre Transmission zu extrafusalen und intrafusalen Muskelfasern oder die cholinerge autonome Transmission zu Schweißdrüsen, Tränendrüsen, Speicheldrüsen und glatter Muskulatur unterbrechen. Indirekte Effekte auf das Zentralnervensystem sind zahlreich, direkte sind nach intramuskulärer Injektion bisher nicht beschrieben worden. BT Typ A wird als Botox, Dysport, Xeomin, Hengli/CBTX-A und Neuronox, BT Typ B als NeuroBloc/Myobloc angeboten. Nebenwirkungen der BT-Therapie können obligat, lokal und systemisch sein. Die Nebenwirkungsprofile der verschiedenen BT-Typ-A-Präparationen sind weitgehend identisch. Bei BT Typ B zeigen sich häufig zusätzlich systemische autonome Nebenwirkungen. Langzeitbehandlungen rufen keine zusätzlichen Nebenwirkungen hervor. Gegen BNT können Antikörper gebildet werden, die die biologische BNT-Wirkung ganz oder teilweise blockieren. Das Risiko einer BNT-Antikörper-Bildung hängt wesentlich ab von der BNT-Menge, die bei jeder BT-Injektions-Serie appliziert wird, vom Intervall zwischen den BT-Injektions-Serien und von der spezifischen biologischen Aktivität (SBA) der BT-Präparation. Diese beträgt bei NeuroBloc 5 MU-E/ng BNT, bei Botox 60, bei Dysport 100 und bei Xeomin 167. Xeomin dürfte daher die günstigsten Antigenitätseigenschaften aufweisen. Entsprechende klinische Erfahrungen stehen jedoch noch aus.

Summary

Therapeutic preparations of botulinum toxin (BT) consist of botulinum neurotoxin (BNT), complexing proteins, and excipients. Depending on the target tissue, BNT can block cholinergic neuromuscular innervation of intra- and extrafusal muscle fibres or cholinergic autonomic innervation of sweat, lacrimal, and salival glands and smooth muscles. Indirect CNS effects are numerous; direct ones have not been reported after intramuscular application. Botulinum toxin type A is distributed as Botox, Dysport, Xeomin, Hengli/CBTX-A, and Neuronox and BT type B as NeuroBloc/Myobloc. Differences in potency labelling of therapeutic BT preparations can be corrected by introduction of a conversion factor of 1:3 between Botox and Dysport, of 1:1 between Botox and Xeomin, and of 1:40 between Botox and NeuroBloc/Myobloc. Acute adverse effects of BT can be obligate, local or systemic. Adverse effect profiles of the different preparations are similar. However, BT type B frequently produces additional autonomic systemic adverse effects. Long-term application does not produce additional adverse effects. BNT can be partially or completely blocked by antibodies. Risk factors include the amount of BNT applied at each injection series, the interval between injection series, and the specific biological potency (SBP) of the BT preparation used. The SBP is 5 equivalent mouse units/ng BNT for NeuroBloc, 60 for Botox, 100 for Dysport, and 167 for Xeomin. Xeomin should therefore have a particularly low antigenicity. Clinical confirmation of this predicition, however, is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Benecke R, Jost WH, Kanovsky P et al. (2005) A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 64:1949–1951

    PubMed  Google Scholar 

  2. Binz T, Blasi J, Yamasaki S et al. (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620

    PubMed  Google Scholar 

  3. Brin MF, Dressler D, Aoki R (2004) Pharmacology of botulinum toxin therapy. In: Jankovic J, Comella C, Brin MF (eds) Dystonia: etiology, clinical features, and treatment. Lippincott Williams & Wilkins, Philadelphia, pp 93–112

  4. Brooks VB (1953) Motor nerve filament block produced by botulinum toxin. Science 117:334–339

    Google Scholar 

  5. Brooks VB (1954) The action of botulinum toxin on motor-nerve filaments. J Physiol 123:501–515

    PubMed  Google Scholar 

  6. Brooks VB (1956) An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J Physiol 134:264–277

    PubMed  Google Scholar 

  7. Burgen ASV, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109:10–24

    PubMed  Google Scholar 

  8. Cui M, Li Z, You S et al. (2002) Mechanisms of the antinociceptive effect of subcutaneous Botox: inhibition of peripheral and central nociceptive processing. Naunyn Schmiedebergs Arch Pharmacol 365:R17

    Article  Google Scholar 

  9. Dressler D (2000) Botulinum Toxin Therapy. Thieme, Stuttgart

  10. Dressler D (2002) Dysport produces intrinsically more swallowing problems than Botox: unexpected results from a conversion factor study in cervical dystonia. J Neurol Neurosurg Psychiatry 73:604

    Article  Google Scholar 

  11. Dressler D, Adib Saberi F (2006) Safety aspects of high dose Xeomin® therapy. J Neurol [Suppl 2]; 141–142

  12. Dressler D, Benecke R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:34–38

    Article  PubMed  Google Scholar 

  13. Dressler D, Bigalke H (2005) Botulinum toxin type B de novo therapy of cervical dystonia: frequency of antibody-induced therapy failure. J Neurol 252:904–907

    Article  PubMed  Google Scholar 

  14. Dressler D, Dirnberger G (2000) Botulinum toxin therapy: risk factors for therapy failure. Mov Disord 15(Suppl 2):51

    Google Scholar 

  15. Dressler D, Hallett M (2006) Immunological aspects of Botox, Dysport and NeuroBloc/Myobloc. Eur J Neurol 1(Suppl):11–15

    Article  Google Scholar 

  16. Dressler D, Rothwell JC (2000) Electromyographic quantification of the paralysing effect of botulinum toxin. Eur Neurol 43:13–16

    Article  PubMed  Google Scholar 

  17. Dressler D, Benecke R, Conrad B (1989) Botulinum-Toxin in der Therapie kraniozervikaler Dystonien. Nervenarzt 60:386–394

    PubMed  Google Scholar 

  18. Dressler D, Eckert J, Kukowski B et al. (1993) Somatosensorisch Evozierte Potentiale bei Schreibkrampf: Normalisierung pathologischer Befunde unter Botulinum Toxin Therapie. Z EEG EMG 24:191

    Google Scholar 

  19. Dressler D, Rothwell JC, Bigalke H (2000) The sternocleidomastoid test: an in-vivo assay to investigate botulinum toxin antibody formation in man. J Neurol 247:630–632

    Article  PubMed  Google Scholar 

  20. Dressler D, Adib Saberi F, Benecke R (2002) Botulinum toxin type B for treatment of axillar hyperhidrosis. J Neurol 249:1729–1732

    Article  PubMed  Google Scholar 

  21. Duchen LW (1971) An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci 14:47–60

    Article  PubMed  Google Scholar 

  22. Duchen LW (1971) Changes in the electron microscopic structure of slow and fast skeletal muscle fibres of the mouse after the local injection of botulinum toxin. J Neurol Sci 14:61–74

    Article  PubMed  Google Scholar 

  23. Erbguth F, Claus D, Engelhardt A et al. (1993) Systemic effect of local botulinum toxin injections unmasks subclinical Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry 56:1235–1236

    PubMed  Google Scholar 

  24. Filippi GM, Errico P, Santarelli R et al. (1993) Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 113:400–404

    PubMed  Google Scholar 

  25. Foran P, Lawrence GW, Shone CC et al. (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35:2630–2636

    Article  PubMed  Google Scholar 

  26. Girlanda P, Vita G, Nicolosi C et al. (1992) Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. J Neurol Neurosurg Psychiatry 55:844–845

    PubMed  Google Scholar 

  27. Hagenah R, Benecke R, Wiegand H (1977) Effects of type A botulinum toxin on the cholinergic transmission at spinal Renshaw cells and on the inhibitory action at Ia inhibitory interneurones. Naunyn Schmiedebergs Arch Pharmacol 299:267–272

    Article  PubMed  Google Scholar 

  28. Ishikawa H, Mitsui Y, Yoshitomi T et al. (2000) Presynaptic effects of botulinum toxin type A on the neuronally evoked response of albino and pigmented rabbit iris sphincter and dilator muscles. Jpn J Ophthalmol 44:106–109

    Article  PubMed  Google Scholar 

  29. Jankovic J, Vuong KD, Ahsan J (2003) Comparison of efficacy and immunogenicity of original versus current botulinum toxin in cervical dystonia. Neurology 60:1186–1188

    PubMed  Google Scholar 

  30. Kaji R, Kohara N, Katayama M et al. (1995) Muscle afferent block by intramuscular injection of lidocaine for the treatment of writers cramp. Muscle Nerve 18:234–235

    Article  PubMed  Google Scholar 

  31. Kaji R, Rothwell JC, Katayama M et al. (1995) Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann Neurol 38:155–162

    Article  PubMed  Google Scholar 

  32. Kerner J (1817) Vergiftung durch verdorbene Würste. Tübinger Blätter f Naturwissensch u Arzneykunde 3:1–25

  33. Kerner J (1820) Neue Beobachtungen über die in Würthemberg so häufig vorfallenden tödlichen Vergiftungen durch den Genuß geräucherter Würste. Osiander, Tübingen

  34. Kerner J (1822) Das Fettgift und die Fettsäure und ihre Wirkungen auf den thierischen Organismus. Ein Beytrag zur Untersuchung des in verdorbenen Würsten giftig wirkenden Stoffes. Cotta, Stuttgart

  35. Lange DJ, Brin MF, Warner CL et al. (1987) Distant effects of local injection of botulinum toxin. Muscle Nerve 10:552–555

    Article  PubMed  Google Scholar 

  36. McMahon H, Foran P, Dolly J (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes: clues to the locus of action. J Biol Chem 267:21338–21343

    PubMed  Google Scholar 

  37. Morris J, Jobling P, Gibbins I (2001) Differential inhibition by botulinum neurotoxin A of cotransmitters released from autonomic vasodilatorneurons. Am J Physiol Heart Circ Physiol 281:2124–2132

    Google Scholar 

  38. Olney RK, Aminoff MJ, Gelb DJ et al. (1988) Neuromuscular effects distant from the site of botulinum neurotoxin injection. Neurology 38:1780–1783

    PubMed  Google Scholar 

  39. de Paiva A, Meunier FA, Molgo J et al. (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA 96:3200–3205

    Article  PubMed  Google Scholar 

  40. Pellizzari R, Rossetto O, Schiavo G et al. (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 354:259–268

    Article  PubMed  Google Scholar 

  41. Pickett A, Panjwani N, O’Keeffe RS (2003) Potency of type A botulinum toxin preparations in clinical use. 40th Annual Meeting of the Interagency Botulism Research Coordinating Committee (IBRCC), Nov 2003, Atlanta, USA

  42. Probst TE, Heise H, Heise P et al. (2002) Rare immunologic side effects of botulinum toxin therapy: brachial plexus neuropathy and dermatomyositis. Mov Disord 17(Suppl 5):S49

    Google Scholar 

  43. Purkiss J, Welch M, Doward S et al. (2000) Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem Pharmacol 59:1403–1406

    Article  PubMed  Google Scholar 

  44. Rosales RL, Arimura K, Takenaga S et al. (1996) Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 19:488–496

    Article  PubMed  Google Scholar 

  45. Sanders DB, Massey EW, Buckley EG (1986) Botulinum toxin for blepharospasm: single-fibre EMG studies. Neurology 36:545–547

    PubMed  Google Scholar 

  46. Schantz EJ (1994) Historical perspective. In: Jankovic J, Hallett M (eds) Therapy with botulinum toxin. Dekker, New York, pp XXIII–XXVI

  47. Schiavo G, Benfenati F, Poulain B et al. (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  PubMed  Google Scholar 

  48. Schiavo G, Santucci A, Dasgupta BR et al. (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103

    Article  PubMed  Google Scholar 

  49. Scott AB (1980) Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. J Pediatr Ophthalmol Strabismus 17:21–25

    PubMed  Google Scholar 

  50. Scott AB (1994) Foreword. In: Jankovic J, Hallett M (eds) Therapy with botulinum toxin. Dekker, New York, pp VII–IX

  51. Scott AB, Rosenbaum A, Collins CC (1973) Pharmacologic weakening of extraocular muscles. Invest Ophthalmol 12:924–927

    PubMed  Google Scholar 

  52. Setler P (2000) The biochemistry of botulinum toxin type B. Neurology 55(Suppl 5):S22–S28

    Google Scholar 

  53. Shone CC, Melling J (19992) Inhibition of calcium-dependent release of noradrenaline from PC12 cells by botulinum type-A neurotoxin. Long-term effects of the neurotoxin on intact cells. Eur J Biochem 207:1009–1016

    Article  Google Scholar 

  54. Takamizawa K, Iwamori M, Kozaki S et al. (1986) TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett 201:229–232

    Article  PubMed  Google Scholar 

  55. Van Ermengem EP (1897) Über einen neuen anaeroben Bacillus und seine Beziehungen zum Botulismus. Z Hyg Infektionskrankh 26:1–56

    Article  Google Scholar 

  56. Welch MJ, Purkiss JR, Foster KA (2000) Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 38:245–258

    Article  PubMed  Google Scholar 

  57. Wiegand H, Erdmann G, Wellhoner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 292:161–165

    Article  PubMed  Google Scholar 

  58. Yamasaki S, Baumeister A, Binz T et al. (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 269:12764–12772

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf eine Verbindung mit folgenden Firmen hin: Allergan, Ipsen, Elan und Merz.

Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dressler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dressler, D. Pharmakologische Aspekte therapeutischer Botulinum-Toxin-Präparationen. Nervenarzt 77, 912–921 (2006). https://doi.org/10.1007/s00115-006-2090-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-006-2090-2

Schlüsselwörter

Keywords

Navigation