Skip to main content
Log in

The convoluted evolution of snail chirality

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left–right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when reproductive character displacement is involved. Understanding the establishment of chirality, the preponderance of dextral species and the rare instances of stable dimorphism is an important target for future research. Since the genetics of chirality have been studied in only a few pulmonate species, we also urge that more taxa, especially those from the sea, should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexandrov DA, Sergievsky SO (1979) One variant of sympatric speciation in snails. In: Likharev IM (ed) Molluscs, main results of their study; sixth meeting on the investigation of molluscs. USSR Academy of Sciences, Leningrad, pp 153–154 (in Russian)

    Google Scholar 

  2. Asami T (1993) Genetic variation and evolution of coiling chirality in snails. Forma 8:263–276

    Google Scholar 

  3. Asami T (2001) Evolution of left–right asymmetry: why isn't the snail mirror flat? In: Salvini-Plawen L, Voltzow J, Sattmann H, Steiner G (eds) Proceedings of the world congress of malacology. Unitas Malacologica, Vienna

    Google Scholar 

  4. Asami T, Cowie RH, Ohbayashi K (1998) Evolution of mirror images by sexually asymmetric mating behavior in hermaphroditic snails. Am Nat 152:225–236

    Article  PubMed  CAS  Google Scholar 

  5. Bantock CR, Noble K, Ratsey M (1973) Sinistrality in Cepaea hortensis. Heredity 30:397–398

    Google Scholar 

  6. Bateson W (1909) Heredity and variation in modern lights. In: Seward AC (ed) Darwin and modern science. Cambridge University Press, Cambridge, pp 85–101

    Google Scholar 

  7. Berry AJ (1962) The growth of Opisthostoma (Plectostoma) retrovertens Tomlin, a minute cyclophorid from a Malayan limestone hill. Proc Malacol Soc Lond 35:46–49

    Google Scholar 

  8. Bock GR, Marsh J (1991) Symposium on biological asymmetry and handedness. Wiley, Chichester

    Google Scholar 

  9. Boorman CJ, Shimeld SM (2002) The evolution of left–right asymmetry in chordates. BioEssays 24:1004–1011

    Article  PubMed  CAS  Google Scholar 

  10. Boycott AE, Diver C (1923) On the inheritance of sinistrality in Limnaea peregra. Proc R Soc Lond B Biol Sci 95:207–213

    ADS  Google Scholar 

  11. Boycott AE, Diver C, Garstang SL, Turner FM (1930) The inheritance of sinistrality in Limnaea peregra. Philos Trans R Soc Lond B Biol Sci 219:51–130

    ADS  Google Scholar 

  12. Brown NA, Wolpert L (1990) The development of handedness in left/right asymmetry. Development 109:1–9

    PubMed  CAS  Google Scholar 

  13. Cain AJ (1977) Variation in spire index of some coiled gastropod shells and its evolutionary significance. Philos Trans R Soc Lond B Biol Sci 277:377–428

    PubMed  ADS  CAS  Google Scholar 

  14. Clarke B, Murray J (1969) Ecological genetics and speciation in land snails of the genus Partula. Biol J Linn Soc 1:31–42

    Google Scholar 

  15. Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  16. Crampton HE (1894) Reversal of cleavage in a sinistral gastropod. Ann NY Acad Sci 8:167–170

    ADS  Google Scholar 

  17. Crampton HE (1932) Studies on the variation, distribution, and evolution of the genus Partula. The species inhabiting Moorea. Publ Carnegie Inst 410:1–335

    Google Scholar 

  18. Davison A, Blaxter ML (2005) An expressed sequence tag survey of gene expression in the pond snail Lymnaea stagnalis, an intermediate vector of Fasciola hepatica. Parasitology 130:539–552

    Article  PubMed  CAS  Google Scholar 

  19. Davison A, Chiba S, Barton NH, Clarke B (2005) Speciation and gene flow between snails of opposite chirality. Publ Lib Sci Biol 3:e282

    Google Scholar 

  20. Davison A, Wade CM, Mordan PB, Clarke B (2005) Sex and darts in slugs and snails. J Zool (in press)

  21. Degner E (1952) Der Erbgang der Inversion bei Laciniaria biplicata Mtg. Mitt Hamb Zool Mus Inst 51:3–61

    Google Scholar 

  22. Diver C, Andersson-Kottö I (1938) Sinistrality in Limnaea peregra (Mollusca, Pulmonata): the problem of mixed broods. J Genet 35:447–525

    Google Scholar 

  23. Diver C, Boycott AE, Garstang SL (1925) The inheritance of inverse symmetry in Lymnaea peregra. J Genet 15:113–200

    Article  Google Scholar 

  24. Dobzhansky T (1934) Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Z Zellforsch Mikrosk Anat 21:169–221

    Article  Google Scholar 

  25. Donati G, Gargiulo S, Porfirio B (1984) Finding 11 sinistral specimens of Conus mediterraneus Hwass in Bruguiêre 1792. La Conchilia 182–183:21–23

    Google Scholar 

  26. Frank W (2005) Faux Cymatium pileare (Linnaeus 1758). http://www.jaxshells.org/faux.htm (accessed 6 April 2005)

  27. Freeman G, Lundelius J (1982) The developmental genetics of dextrality and sinistrality in the gastropod Lymnaea peregra. Wilhelm Roux Arch Dev Biol 191:69–83

    Article  Google Scholar 

  28. Futuyma DJ (1983) Mechanisms of speciation. Science 219:1059–1060

    PubMed  Google Scholar 

  29. Gittenberger E (1973) Beiträge zur Kenntnis der Pupillacea III; Chondrininae. Brill, Leiden (in Dutch and German)

  30. Gittenberger E (1988) Sympatric speciation in snails; a largely neglected model. Evolution 42:826–828

    Google Scholar 

  31. Gittenberger E (1995) On the other hand... Nature 373:19

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Goodfriend GA (1986) Variation in land-snail shell form and size and its causes: a review. Syst Zool 35:204–223

    Google Scholar 

  33. Gould SJ (1985) The sinister and the trivial. Nat Hist 94:16–26

    Google Scholar 

  34. Gould SJ, Young ND, Kasson B (1985) The consequences of being different—sinistral coiling in Cerion. Evolution 39:1364–1379

    Google Scholar 

  35. Harada Y, Hosoiri Y, Kuroda R (2004) Isolation and evaluation of dextral-specific and dextral-enriched cDNA clones as candidates for the handedness-determining gene in a freshwater gastropod, Lymnaea stagnalis. Dev Genes Evol 214:159–169

    Article  PubMed  CAS  Google Scholar 

  36. Hesse P (1914) Kann sich die abnorme Windungsrichtung bei den Gastropoden vererben? Nachrbl Dtsch Malakozool Ges 46:162–167

    Google Scholar 

  37. Hierck BP, Witte B, Poelmann RE, Gittenberger-de Groot AC, Gittenberger E (2005) Chirality in snails is determined by highly conserved asymmetry genes. J Molluscan Stud 71:192–195

    Article  Google Scholar 

  38. Hosoiri Y, Harada Y, Kuroda R (2003) Construction of a backcross progeny collection of dextral and sinistral individuals of a freshwater gastropod, Lymnaea stagnalis. Dev Genes Evol 213:193–198

    PubMed  CAS  Google Scholar 

  39. Hurst GDD, Schilthuizen M (1998) Selfish genetic elements and speciation. Heredity 80:2–8

    Article  Google Scholar 

  40. Inoda T, Hirata Y, Kamimura S (2003) Asymmetric mandibles of water-scavenger larvae improve feeding effectiveness on right-handed snails. Am Nat 162:811–814

    Article  PubMed  Google Scholar 

  41. Janssen AW (1966) Een linksgewonden exemplaar van Arianta arbustorum (L.) uit Nederland. Basteria 30:8–10

    Google Scholar 

  42. Johnson MS (1982) Polymorphism for direction of coil in Partula suturalis: behavioural isolation and positive frequency dependent selection. Heredity 49:145–151

    Google Scholar 

  43. Johnson MS (1987) Adaptation and rules of form—chirality and shape in Partula suturalis. Evolution 41:672–675

    Google Scholar 

  44. Johnson MS, Clarke B, Murray J (1990) The coil polymorphism in Partula suturalis does not favor sympatric speciation. Evolution 44:459–464

    Google Scholar 

  45. Johnson MS, Murray J, Clarke B (1993) The ecological genetics and adaptive radiation of Partula on Moorea. Oxf Surv Evol Biol 9:167–238

    Google Scholar 

  46. Kennedy D, Norman C (2005) What don't we know? Science 309:75

    PubMed  CAS  Google Scholar 

  47. Laidlaw FF (1963) Notes on the genus Dyakia, with a list of the species. J Conchol 25:137–151

    Google Scholar 

  48. Laidlaw FF, Solem A (1961) The land snail genus Amphidromus. A synoptic catalogue. Fieldiana Zool 41:503–677

    Google Scholar 

  49. Lee HG, Frank W (2005) Reverse coiled gastropods. http://www.jaxshells.org/reverse.htm (accessed 18 May 2005)

  50. Lehmann H, Maassen WJM (2004) A new species of Amphidromus from Laos (Gastropoda, Pulmonata, Camaenidae). Basteria 68:17–20

    Google Scholar 

  51. Lipton CS, Murray J (1979) Courtship of land snails of the genus Partula. Malacologia 19:129–146

    Google Scholar 

  52. Lolle SJ, Victor JL, Young JM, Pruitt RE (2005) Genome-wide non-Mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434:505–509

    Article  PubMed  ADS  CAS  Google Scholar 

  53. Mallet J (1986) Hybrid zones of Heliconius butterflies in Panama and the stability and movement of warning colour clines. Heredity 56:191–202

    Google Scholar 

  54. McManus C (2002) Right hand left hand. The origins of asymmetry in brains, bodies, atoms, and cultures. Weidenfeld and Nicolson, London

    Google Scholar 

  55. Meisenheimer J (1912) Die Weinbergschnecke Helix pomatia L. In: Ziegler HE, Woltereck R (eds) Monographien einheimischer Tiere. Klinkhardt, Leipzig, pp 1–140

    Google Scholar 

  56. Minato H (1991) A list of the reversely rounded land snails reported in Japan (Gastropoda). J Nat Hist Jpn 1:41–46 (in Japanese)

    Google Scholar 

  57. Muller HJ (1939) Reversibility in evolution considered from the standpoint of genetics. Biol Rev Camb Philos Soc 14:261–280

    Google Scholar 

  58. Murray J, Clarke B (1966) The inheritance of polymorphic shell characters in Partula (Gastropoda). Genetics 54:1261–1277

    PubMed  Google Scholar 

  59. Murray J, Clarke B (1976) Supergenes in polymorphic land snails. II. Partula suturalis. Heredity 37:271–282

    PubMed  CAS  Google Scholar 

  60. Murray J, Clarke B (1980) The genus Partula on Moorea: speciation in progress. Proc R Soc Lond B Biol Sci 211:83–117

    ADS  Google Scholar 

  61. Ng PKL, Tan LWH (1985) ‘Right handedness’ in the heterochelous calappoid and xanthoid crabs—suggestion for functional advantage. Crustaceana 49:98–100

    Google Scholar 

  62. Nordsieck H (1963) Zur Anatomie und Systematik der Clausilien, I. Arch Molluskenkd 92:81–115

    Google Scholar 

  63. Nordsieck H (1978) Beobachtungen bei der Haltung von Alopien. Mitt Dtsch Malakozool Ges 3:371–373

    Google Scholar 

  64. Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 4:459–468

    Article  PubMed  CAS  Google Scholar 

  65. Orr HA (1991) Is single-gene speciation possible? Evolution 45:764–769

    Google Scholar 

  66. Örstan A, Welter-Schultes F (2002) A dextral specimen of Albinaria cretensis (Pulmonata: Clausiliidae). Triton 5:25–28

    Google Scholar 

  67. Panha S (1996) A new species of Amphidromus from Thailand (Stylommatophora: Camaenidae). Malacol Rev 29:131–132

    Google Scholar 

  68. Peake JF (1973) Species isolation in sympatric populations of the genus Diplommatina (Gastropoda, Prosobranchia, Cyclophoridae, Diplommatininae). Malacologia 14:303–312

    Google Scholar 

  69. Pierce HG (1996) On sinistral coiling among fossil North American Lymnaeidae. Veliger 39:220–225

    Google Scholar 

  70. Reise H, Benke M, Hutchinson JMC (2002) A sinistral specimen of the terrestrial slug Arion lusitanicus (Gastropoda: Pulmonata: Arionidae). Malakol Abh Staatl Mus Tierk Dresden 20:247–252

    Google Scholar 

  71. Rice WR, Hostert EE (1994) Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47:1637–1653

    Google Scholar 

  72. Robertson R (1993) Snail handedness. Natl Geogr Res Expl 9:120–131

    Google Scholar 

  73. Schilthuizen M (2000) Dualism and conflicts in understanding speciation. BioEssays 22:1134–1141

    Article  PubMed  CAS  Google Scholar 

  74. Schilthuizen M, Lombaerts M (1994) Population structure and levels of gene-flow in the Mediterranean land snail Albinaria corrugata (Pulmonata: Clausiliidae). Evolution 48:577–586

    Google Scholar 

  75. Schilthuizen M, Scott BJ, Cabanban AS, Craze PG (2005) Population structure and coil dimorphism in a tropical land snail. Heredity 95:216–220

    Article  PubMed  CAS  Google Scholar 

  76. Selman GG, Waddington CH (1953) The structure of the spermatozoa in dextral and sinistral races of Limnaea peregra. Q J Microsc Sci 94:391–397

    Google Scholar 

  77. Shibazaki Y, Shimizu M, Kuroda R (2004) Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol 14:1462–1467

    Article  PubMed  CAS  Google Scholar 

  78. Stone J, Björklund M (2002) Delayed prezygotic isolating mechanisms: evolution with a twist. Proc R Soc Lond B Biol Sci 269:861–865

    Article  CAS  Google Scholar 

  79. Sturtevant AH (1923) Inheritance of direction of coiling in Limnaea. Science 58:269–270

    PubMed  ADS  Google Scholar 

  80. Taylor JW (1911) Monograph of the land and freshwater Mollusca of the British Isles, vol 18. Taylor, Leeds

    Google Scholar 

  81. Ueshima R, Asami T (2003) Single-gene speciation by left–right reversal. Nature 425:679

    Article  PubMed  ADS  CAS  Google Scholar 

  82. Uit de Weerd DR, Groenenberg DSJ, Schilthuizen M, Gittenberger E (2005) Reproductive character displacement by reversion of coiling in clausiliid snails (Gastropoda, Pulmonata). Biol J Linn Soc (in press)

  83. Valentine JW (1997) Cleavage patterns and the topology of the metazoan tree of life. Proc Natl Acad Sci U S A 94:8001–8005

    Article  PubMed  ADS  CAS  Google Scholar 

  84. Valero D (1972) Discovery of sinistral Conus ventricosus (Hwass in B.) from the Côte d'Azur, France. Hawaii Shell News 20(3):6

    MathSciNet  Google Scholar 

  85. van Batenburg FHD, Gittenberger E (1996) Ease of fixation of a change in coiling: computer experiments on chirality in snails. Heredity 76:278–286

    Google Scholar 

  86. Vermeij GJ (1975) Evolution and distribution of left-handed and planispiral coiling in snails. Nature 254:419–420

    Article  ADS  Google Scholar 

  87. Wade CM, Mordan PB, Naggs F (2005) Evolutionary relationships among the pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biol J Linn Soc (in press)

  88. Wandelt J, Nagy LM (2004) Left–right asymmetry: more than one way to coil a shell. Curr Biol 14:R654–R656

    Article  PubMed  CAS  Google Scholar 

  89. Wise J, Harasewych MG, Dillon RT Jr (2004) Population divergence in the sinistral whelks of North America, with special reference to the east Florida ecotone. Mar Biol 145:1167–1179

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tatiana Czeschlik for inviting us to write this review. Edmund Gitttenberger, Harry Lee and Dennis Uit de Weerd gave comments on a previous version of this paper. Cuillin Bantock, Satoshi Chiba, Bryan Clarke, Paul Craze, Bill Frank, Gary Freeman, Sinos Giokas, Jonathan Hendricks, Harry Lee, Wim Maassen, Somsak Panha, Sankurie Pye, Bronwen Scott, Miklós Szekeres and Jaap Vermeulen provided useful data, references, illustrations and ideas. The comments of John Hutchinson and two anonymous reviewers helped improve the paper further.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schilthuizen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilthuizen, M., Davison, A. The convoluted evolution of snail chirality. Naturwissenschaften 92, 504–515 (2005). https://doi.org/10.1007/s00114-05-0045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-05-0045-2

Keywords

Navigation