Skip to main content
Log in

Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The anthropocentric term “extremophile” was introduced more than 30 years ago to describe any organism capable of living and growing under extreme conditions—i.e., particularly hostile to human and to the majority of the known microorganisms as far as temperature, pH, and salinity parameters are concerned. With the further development of studies on microbial ecology and taxonomy, more “extreme” environments were found and more extremophiles were described. Today, many different extremophiles have been isolated from habitats characterized by hydrostatic pressure, aridity, radiations, elevated temperatures, extreme pH values, high salt concentrations, and high solvent/metal concentrations, and it is well documented that these microorganisms are capable of thriving under extreme conditions better than any other organism living on Earth. Extremophiles have also been investigated as far as the search for life in other planets is concerned and even to evaluate the hypothesis that life on Earth came originally from space. Extremophiles are interesting for basic and applied sciences. Particularly fascinating are their structural and physiological features allowing them to stand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA polymerase, thermostable enzymes), the search was successful and the final application was achieved, but certainly further exploitations are next to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe F, Kat C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    Article  PubMed  CAS  Google Scholar 

  • Adams MWW (1999) The biochemical diversity of life near and above 100 °C in marine environments. J Appl Microbiol 85:108S–117S

    Article  Google Scholar 

  • Aguilar A (1996) Extremophile research in the European Union: from fundamental aspects to industrial expectations. FEMS Microbiol Rev 18:89–92

    Article  CAS  Google Scholar 

  • Aguilar A, Ingemansson T, Magniea E (1998) Extremophile microorganisms as cell factories: support from the European Union. Extremophiles 2:367–373

    Article  PubMed  CAS  Google Scholar 

  • Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita MA, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Alajtal AI, Edwards HG, Scowen IJ (2009) Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology. Anal Bioanal Chem 297(1):215–221

    Google Scholar 

  • Alimenti C, Vallesi A, Pedrini B, Wüthrich K, Luporini P (2009) Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate, Euplotes. IUBMB Life 61:838–845

    Article  PubMed  CAS  Google Scholar 

  • Anton J, Rossello-Mora R, Rodrigues-Valera F, Amman R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  CAS  Google Scholar 

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262

    PubMed  CAS  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Patzold J, Nobre MF, Da Costa MS, Huber R (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587

    Article  PubMed  CAS  Google Scholar 

  • Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63:3637–3642

    PubMed  CAS  Google Scholar 

  • Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes. Springer, New York, pp 811–835

    Chapter  Google Scholar 

  • Arahal DR, Marquez MC, Volcani BE, Schleifer KH, Ventosa A (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49:521–530

    Article  PubMed  Google Scholar 

  • Arahal DR, Gutierrez MC, Volcani BE, Ventosa A (2000) Taxonomic analysis of extremely halophilic archaea isolated from 56-years-old Dead Sea brine samples. Syst Appl Microbiol 23:376–385

    PubMed  CAS  Google Scholar 

  • Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446

    Article  PubMed  CAS  Google Scholar 

  • Arun AB, Chen WM, Lai WA, Chou JH, Shen FT, Rekha PD, Young CC (2009) Lutaonella thermophila gen. nov., sp. nov., a moderately thermophilic member of the family Flavobacteriaceae isolated from a coastal hot spring. Int J Syst Evol Microbiol 8:2069–2073

    Article  Google Scholar 

  • Asha Poorna C, Prema P (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol 98:485–490

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297

    Article  PubMed  CAS  Google Scholar 

  • Averhoff B, Müller V (2010) Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 161:506–514

    Article  PubMed  CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  PubMed  CAS  Google Scholar 

  • Bakermans C, Sloup RE, Zarka DG, Tiedje JM, Thomashow MF (2009) Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4. Extremophiles 13:21–30

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Sen S (2009) Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features. J Chem Inf Model 49:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Bathe S, Norris PR (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497

    Article  PubMed  CAS  Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

    Article  PubMed  CAS  Google Scholar 

  • Baumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenase. J Biol Chem 275:17968–17973

    Article  PubMed  CAS  Google Scholar 

  • Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531

    Article  PubMed  Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183:2298–2305

    Article  PubMed  CAS  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed  CAS  Google Scholar 

  • Booth IR (1985) The regulation of intracellular pH in bacteria. Novartis Found Symp 221:19–28

    Google Scholar 

  • Bornscheuer UT, Bessler C, Srinivas R, Krishna SH (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

    Article  PubMed  CAS  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Systems 23(5):9

    Article  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    PubMed  CAS  Google Scholar 

  • Bowman JP, McCammom SA, Brown JL, McMeekin TA (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222

    Article  Google Scholar 

  • Branciamore S, Gallori E, Di Giulio M (2008) The basal phylogenetic position of Nanoarchaeum equitans (Nanoarchaeota). Front Biosci 1:6886–6892

    Article  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, New York

    Google Scholar 

  • Bruns A, Berthe-Corti L (2000) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448

    Article  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris H (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc Royal Soc London-Biol Sci 265:1461–1465

    Article  CAS  Google Scholar 

  • Buck DP, Smith GD (1995) Evidence for a Na+/H+ electrogenic antiporter in an alkaliphilic cyanobacterium Synechocystis. FEMS Microbiol Lett 128:315–320

    CAS  Google Scholar 

  • Burghardt T, Junglas B, Siedler F, Wirth R, Huber H, Rachel R (2009) The interaction of Nanoarchaeum equitans with Ignicoccus hospitalis: proteins in the contact site between two cells. Biochem Soc Trans 37:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bustard MT, Burgess JG, Meeyoo V, Wright PC (2000) Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries. J Chem Technol Biotechnol 75:1095–1109

    Article  CAS  Google Scholar 

  • Cai M, Tang SK, Chen YG, Li Y, Zhang YQ, Li WJ (2009) Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol 59:2471–2475

    Article  PubMed  CAS  Google Scholar 

  • Canganella F, Wiegel J (1993) The potential of thermophilic clostridia in biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworths, Stoneham, pp 391–429

    Google Scholar 

  • Canganella F, Vettraino AM, Trovatelli LD (1995) The extremophilic bacteria—ecology and agroindustrial applications. Ann Microbiol Enzymol 45:173–184

    CAS  Google Scholar 

  • Canovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline–betaine pathway. J Bacteriol 178:7221–7226

    PubMed  CAS  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  PubMed  CAS  Google Scholar 

  • Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2010) Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol 76:6778–6786

    Article  PubMed  CAS  Google Scholar 

  • Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39:1254–1260

    Article  CAS  Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Thomas T (2000) Extremophiles in: encyclopedia of microbiology vol 2, 2nd edn. Academic, London, pp 317–337

    Google Scholar 

  • Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, Tang SK, Zhang YQ, Liu ZX, Chen QH, He JW, Cui XL, Li WJ (2010) Zhihengliuellasalsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles 14:397–402

    Article  PubMed  CAS  Google Scholar 

  • Chiuri R, Maiorano G, Rizzello A, Del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 96:1586–1596

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS (1999) Life on Venus. Planet Space Sci 47:1487–1501

    Article  CAS  Google Scholar 

  • Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteor Planet Sci 37:1287–1298

    Article  CAS  Google Scholar 

  • Connaris H, West SM, Hough DW, Danson MJ (1998) Cloning and expression in Escherichia coli of the gene encoding citrate synthase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Extremophiles 2:61–68

    Article  PubMed  CAS  Google Scholar 

  • Conrad R, Seiler W (1982) Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake and soil. Arch Microbiol 132:41–46

    Article  CAS  Google Scholar 

  • Cotugno R, Rosaria Ruocco M, Marco S, Falasca P, Evangelista G, Raimo G, Chambery A, Di Maro A, Masullo M, De Vendittis E (2009) Differential cold-adaptation among protein components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125. Mol Biosyst 5:519–528

    Article  PubMed  CAS  Google Scholar 

  • Daniel RM (1996) The upper limits of enzyme thermostability. Enzyme Microb Technol 19:74–79

    Article  CAS  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol A Physiol 117:307–312

    Article  Google Scholar 

  • Das T, Ayyappan S, Chaudhury GR (1999) Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. Biometals 12:1–10

    Article  Google Scholar 

  • Delong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    PubMed  CAS  Google Scholar 

  • Deppenmeier U, Mülle V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163

    Article  CAS  Google Scholar 

  • Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297

    Article  PubMed  CAS  Google Scholar 

  • Deutch CE (1994) Characterization of a novel salt-tolerant Bacillus sp. from the nasal cavities of desert iguanas. FEMS Microbiol Lett 121:55–60

    Article  CAS  Google Scholar 

  • Dopson M (2011) Ecology, adaptations, and applications of acidophiles. In: Anitori R (ed) Extremophiles: microbiology and biotechnology. Horizon press (in press)

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088

    Article  PubMed  CAS  Google Scholar 

  • Doronina NV, Trotsenko YA, Tourova TP (2000) Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859

    PubMed  CAS  Google Scholar 

  • Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908

    Article  PubMed  CAS  Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, Van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191

    Article  CAS  Google Scholar 

  • Eddy ML, Jablonski PE (2000) Purification and characterization of a membrane-associated ATPase from Natronococcus occultus, a haloalkaliphilic archaeon. FEMS Microbiol Lett 189:211–214

    Article  PubMed  CAS  Google Scholar 

  • Edwards HGM (2004) Raman spectroscopic protocol for the molecular recognition of key biomarkers in astrobiological exploration. Orig Life Evol Biosph 34:3–11

    Article  PubMed  CAS  Google Scholar 

  • Edwards HG, Vandenabeele P, Jorge-Villar SE, Carter EA, Perez FR, Hargreaves MD (2007) The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 68:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg H (1995) Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch Biochem Biophys 318:1–5

    Article  PubMed  CAS  Google Scholar 

  • Empadinhas N, Da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Internat Microbiology 11:151–161

    CAS  Google Scholar 

  • Evangelista G, Falasca P, Ruggiero I, Masullo M, Raimo G (2009) Molecular and functional characterization of polynucleotide phosphorylase from the Antarctic eubacterium Pseudoalteromonas haloplanktis. Protein Pept Lett 16:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Fajardo-Cavazos P, Nicholson WL (2000) The TRAP-like SplA protein is a trans-acting negative regulator of spore photoproduct lyase synthesis during Bacillus subtilis sporulation. J Bacteriol 182:555–560

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Barcelona MJ, Nogi Y, Kato C (2000) Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep Sea Res I Oceanogr Res Pap 47:1173–1182

    Article  CAS  Google Scholar 

  • Fardeau ML, Barsotti V, Cayol JL, Guasco S, Michotey V, Joseph M, Bonin P, Ollivier B (2010) Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the symbiobacterium branch within the Firmicutes. Extremophiles 14:241–247

    Article  PubMed  CAS  Google Scholar 

  • Fegatella F, Cavicchioli R (2000) Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. App Env Microbiol 66:2037–2044

    Article  CAS  Google Scholar 

  • Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9:104–112

    Article  PubMed  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB, Papenguth HW (2000) Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Env Sci Tech 34:2311–2317

    Article  CAS  Google Scholar 

  • Friedman EI, Hua MS, Ocampo-Friedman R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–259

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Garabito MJ, Arahal DR, Mellado E, Marquez MC, Ventosa A (1997) Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741

    Article  PubMed  CAS  Google Scholar 

  • Gemmell RT, Knowles CJ (2000) Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol Lett 192:85–190

    Article  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa J-P, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim et Biophys Acta-Protein Struc Mol Enzymol 1342:119–131

    Article  CAS  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaido GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006

    PubMed  CAS  Google Scholar 

  • Gorbushina A (2003) Microcolonial fungi: survival potential of terrestrial vegetative structures. Astrobiology 3:543–554

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina A, Broughton WJ (2009) Microbiology of the atmosphere–rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Grant WD (1988) Bacteria from alkaline, saline environments and their potential in biotechnology. J Chem Technol Biotech 42:291–294

    Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

    Article  CAS  Google Scholar 

  • Guan TW, Tang SK, Wu JY, Zhi XY, Xu LH, Zhang LL, Li WJ (2009) Haloglycomyces albus gen. nov., sp. nov., a halophilic, filamentous actinomycete of the family Glycomycetaceae. Int J Syst Evol Microbiol 59:1297–1301

    Article  PubMed  CAS  Google Scholar 

  • Gyure RA, Konopka A, Brooks A, Doemel W (1987) Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl Environ Microbiol 53:2069–2076

    PubMed  CAS  Google Scholar 

  • Hayakawa J, Kondoh Y, Ishizuka M (2009) Cloning and characterization of flagellin genes and identification of flagellin glycosylation from thermophilic Bacillus species. Biosci Biotechnol Biochem 73:1450–1452

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Bilger W, Türk R, Lange OL (2009) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. New Phytol 185:459–470

    Article  PubMed  CAS  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    PubMed  CAS  Google Scholar 

  • Heise R, Müller V, Gottschalk G (1992) Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium-ion gradient. FEMS Microbiol Lett 112:261–268

    Article  Google Scholar 

  • Hezayen FF, Rehm BHA, Eberhardt R, Steinbuchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325

    Article  PubMed  CAS  Google Scholar 

  • Hirayama H, Takami H, Inoue A, Horikoshi K (1998) Isolation and characterization of toluene-sensitive mutants from Pseudomonas putida IH-2000. FEMS Microbiol Lett 169:219–225

    Article  PubMed  CAS  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Hong MR, Kim YS, Park CS, Lee JK, Kim YS, Oh DK (2009) Characterization of a recombinant beta-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. J Biosci Bioeng 108:36–40

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 35:1407–1414

    CAS  Google Scholar 

  • Horikoshi K (1996) Alkaliphiles from an industrial point of view. FEMS Microbiol Rev 18:259–270

    CAS  Google Scholar 

  • Horikoshi K (1998) Introduction. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York

    Google Scholar 

  • Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Orig Life Evol Biosph 31:527–547

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26–35

    Article  PubMed  CAS  Google Scholar 

  • Hua X, Wang C, Zhao Y, Wang H, Huang L, Xu G, Li M, Wang Y, Tian B, Hua Y (2010) Both OB folds of single-stranded DNA-binding protein are essential for its ssDNA binding activity in Deinococcus radiodurans. Protein Pept Lett 17:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52

    Article  CAS  Google Scholar 

  • Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov., sp. nov. Syst Appl Microbiol 19:40–49

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    Article  CAS  Google Scholar 

  • Imhoff JF, Hashwa F, Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84:381–388

    Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157:37–48

    Article  PubMed  Google Scholar 

  • Johnson DB (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int Biodeterior Biodegrad 35:41–58

    Article  CAS  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometal 59:147–157

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic microorganisms. Adv Microb Physiol 54:201–255

    Article  CAS  Google Scholar 

  • Johnson DB, Rang L (1993) Effects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal. J Gen Microbiol 139:1417–1423

    CAS  Google Scholar 

  • Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Jonsson AV, Moen J, Palmqvist K (2008) Predicting lichen hydration using biophysical models. Oecologia 156:259–273

    Article  PubMed  Google Scholar 

  • Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UV-B radiation. App Env Microbiol 65:3820–3827

    CAS  Google Scholar 

  • Jr McSween HY (2006) Water on Mars. Elements 2:135–136

    Article  CAS  Google Scholar 

  • Kaieda N, Wakagi T, Koyama N (1998) Presence of Na+-stimulated V-type ATPase in the membrane of a facultatively anaerobic and halophilic alkaliphile. FEMS Microbiol Lett 167:57–61

    Article  PubMed  CAS  Google Scholar 

  • Kamekura M (1998) Diversity of extremely halophilic bacteria. Extremophiles 2:289–295

    Article  PubMed  CAS  Google Scholar 

  • Kamekura M, Dyall-Smith ML, Upasan V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for the transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to the genus Halorubrum, Natrialba, and Natronomonas gen. nov., respectively as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Rainey FA, Andersson MA, Lassila E-LN, Ulrych U, Busse J-J, Weiss N, Mikkola R, Salkinoja-Salonen M (2000) Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50:355–363

    PubMed  Google Scholar 

  • Kargi F, Dincer AR (1998) Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor. Enz Microbial Tech 22:427–433

    Article  CAS  Google Scholar 

  • Kargi F, Dincer AR (2000) Use of halophilic bacteria in biological treatment of saline wastewater by fed-batch operation. Water Environ Res 72:170–174

    Article  CAS  Google Scholar 

  • Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, Pawlik B, Kołoczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol 53:463–473

    PubMed  CAS  Google Scholar 

  • Kato C, Inoue A, Horikoshi K (1996a) Isolating and characterizing deep-sea marine microorganisms. Trends Biotech 14:6–12

    Article  CAS  Google Scholar 

  • Kato C, Masui N, Horikoshi K (1996b) Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin trench. J Mar Biotechnol 4:96–99

    Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Marianas Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Khelifi N, Ben Romdhane E, Hedi A, Postec A, Fardeau ML, Hamdi M, Tholozan JL, Ollivier B, Hirschler-Réa A (2010) Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. Extremophiles 14:297–304

    Article  PubMed  CAS  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172:321–329

    Article  PubMed  CAS  Google Scholar 

  • Kieboom J, Dennis JJ, De Bont JAM, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int J Syst Evol Microbiol 58:817–820

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Pierre B, Ostermeier M, Looger LL, Kim JR (2009) Enzyme stabilization by domain insertion into a thermophilic protein. Protein Eng Des Sel 22:615–623

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch C, Sahm K, Jorgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychropilia gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643

    Article  PubMed  CAS  Google Scholar 

  • Knowles EJ, Castenholz RW (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol 66:261–270

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kimura B, Fujii T (2000) Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int J Syst Evol Microbiol 50:1621–1627

    PubMed  CAS  Google Scholar 

  • Kotelnikova S, Pedersen K (1997) Evidence for methanogenic Archaea and homoacetogenic bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20:339–349

    Article  CAS  Google Scholar 

  • Koyama N (1999) Presence of Na+-stimulated P-type ATPase in the membrane of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. Curr Microbiol 39:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson JK (ed) (1992) Thermophilic bacteria. CRC, Boca Raton

    Google Scholar 

  • Krulwich TA (1986) Bioenergetics of alkalophilic bacteria. J Membr Biol 89:113–125

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Guffanati AA (1989) Alkaliphilic bacteria. Ann Rev Microbiol 43:435–463

    Article  CAS  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DB (1996) Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta 1275:21–26

    Article  PubMed  Google Scholar 

  • Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotech Adv 17:561–594

    Article  CAS  Google Scholar 

  • Kumar P, Islam A, Ahmad F, Satyanarayana T (2009) Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation. Appl Biochem Biotechnol 160:879–890

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Roy D (2009) Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation. J Mol Graph Model 27:871–880

    Article  PubMed  CAS  Google Scholar 

  • Larsen H (1962) Halophilism. In: Gunsalus IC, Stanier RY (eds) The bacteria. vol. 4. Academic, New York, pp 297–342

    Google Scholar 

  • Larson AD, Kallio RE (1954) Purification and properties of a bacterial urease. J Bacteriol 68:67–73

    Article  PubMed  CAS  Google Scholar 

  • Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106:15527–15533

    Article  PubMed  CAS  Google Scholar 

  • Lawson PA, Deutch CE, Collins MD (1996) Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 81:109–112

    PubMed  CAS  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and Archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  PubMed  CAS  Google Scholar 

  • Leduc LG, Ferroni GD (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14:103–120

    Article  CAS  Google Scholar 

  • Leigh JA, Wolfe RS (1983) Acetogenium kivui gen. nov., sp. nov., a thermophilic acetogenic bacterium. Int J Syst Bacteriol 33:886–889

    Article  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  PubMed  CAS  Google Scholar 

  • Lettinga G, Rebac S, Parshina S, Nozhevnikova A, Van Lier JB, Stams AJM (1999) High-rate anaerobic treatment of wastewater at low temperatures. App Env Microbiol 65:1696–1702

    CAS  Google Scholar 

  • Leveau JH, Uroz S, De Boer W (2009) The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 12:281–292

    Article  PubMed  CAS  Google Scholar 

  • Li X-Z, Poole K (1999) Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 45:18–22

    Article  PubMed  CAS  Google Scholar 

  • Lien T, Madsen M, Rainey FA, Birkeland N-K (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 33:813–819

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Archilla AI, Marin I, Amils R (1995) Microbial ecology of an acidic river: biotechnological applications. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processing II. University of Chile, Santiago, pp 63–74

    Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981. doi:10.1128/AEM.01868-10

    Article  PubMed  CAS  Google Scholar 

  • MacElroy M (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75

    Article  Google Scholar 

  • Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and Arctic habitats. Int J Syst Evol Microbiol 58:2977–2982

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1998) Low-temperature bioremediation of a waste water contaminated with anionic surfactant and fuel oil. Appl Microbiol Biotechnol 49:482–486

    Article  PubMed  CAS  Google Scholar 

  • Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811

    Article  PubMed  CAS  Google Scholar 

  • Marteinsson VT, Birrien J-L, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359

    Article  PubMed  Google Scholar 

  • Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan trench, including a description of the deep-sea species Psychrobacter pacificensis, sp. nov. Int J Syst Evol Microbiol 50:835–846

    PubMed  CAS  Google Scholar 

  • Mata JA, Béjar V, Bressollier P, Tallon R, Urdaci MC, Quesada E, Llamas I (2008) Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J Appl Microbiol 105:521–528

    Article  PubMed  CAS  Google Scholar 

  • Matsuo S, Shirai H, Takada Y (2010) Isocitrate dehydrogenase isozymes from a psychrotrophic bacterium, Pseudomonas psychrophila. Arch Microbiol 192:639–650

    Article  PubMed  CAS  Google Scholar 

  • McCliment EA, Voglesonger KM, O'Day PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ Microbiol 8:114–125

    Article  PubMed  CAS  Google Scholar 

  • McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1939–1951

    Chapter  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57

    Article  PubMed  CAS  Google Scholar 

  • Mesbah N, Cook G, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+ (K+)/H+ antiporters. Mol Microbiol 74:270–281

    Article  PubMed  CAS  Google Scholar 

  • Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346

    PubMed  CAS  Google Scholar 

  • Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki KI (2009) Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiseria phyl. nov., originally called candidate phylum OP5. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.010033-0

    Google Scholar 

  • Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1997) Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo Ice Shelf, Antarctica. Arch Microbiol 167:54–60

    Article  PubMed  CAS  Google Scholar 

  • Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1998) Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica. Arch Microbiol 169:231–238

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka S, Yoshimura E (2008) External iron regulates polyphosphate content in the acidophilic, thermophilic alga Cyanidium caldarium. Biol Trace Elem Res 125:286–289

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R (1995) Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 61:2302–2307

    PubMed  CAS  Google Scholar 

  • Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkalophilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 59:2311–2316

    PubMed  CAS  Google Scholar 

  • Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859

    PubMed  CAS  Google Scholar 

  • Norris PR, Johnson DB (1998) Acidophilic microorganisms. In: Horikoshi K, Grant WD (eds) Microbial life in extreme environments. Wiley, New York, pp 133–154

    Google Scholar 

  • Oethinger M, Kern WV, Goldman JD, Levy SB (1998) Association of organic solvent tolerance and fluoroquinolone resistance in clinical isolates of Escherichia coli. J Antimicrob Chemother 41:111–114

    Article  PubMed  CAS  Google Scholar 

  • Ogg C, Patel BK (2009) Sporolituus thermophilus gen. nov., sp. nov., a citrate-fermenting, thermophilic, anaerobic bacterium from geothermal waters of the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:2848–2853

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    PubMed  CAS  Google Scholar 

  • Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Frensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828

    Article  PubMed  Google Scholar 

  • Olsson-Francis K, De la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 76:2115–2121

    Article  PubMed  CAS  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Article  Google Scholar 

  • Orange F, Westall F, Disnar JR, Prieur D, Bienvenu N, Le Romancer M, Défarge Ch (2009) Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7:403–418

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2006) Life at high salt conditions. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, volume 2. Springer, New York, pp 263–282

    Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Evol Microbiol 47:233–238

    Google Scholar 

  • Oshima T, Moriya T (2008) A preliminary analysis of microbial and biochemical properties of high-temperature compost. Ann NY Acad Sci 1125:338–344

    Article  PubMed  CAS  Google Scholar 

  • Ozturk S, Aslim B (2009) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res Int 17:595–602

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasin bacteria: new insights. Biochim Biophys Acta: Biomembr 1717:67–88

    Article  CAS  Google Scholar 

  • Paerl HW, Priscu JC (1998) Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb Ecol 36:221–230

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov., a novel obligately mixotrophic, moderately thermophilic, thiosulfate oxidizing bacterium. Int J Syst Evol Microbiol 59:2171–2175

    Article  PubMed  CAS  Google Scholar 

  • Patching JW, Eardly D (1997) Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community. Deep Sea Res I Oceanogr Res Pap 44:1655–1670

    Article  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    PubMed  CAS  Google Scholar 

  • Phillips RW, Wiegel J, Berry CY, Fliermans C, Peacock AD, White DC, Shimkets LJ (2002) Kineococcus radiotolerans sp. nov. a radiation-resistant, Gram positive bacterium. Int J Syst Evol Microbiol 52:933–938

    Article  PubMed  CAS  Google Scholar 

  • Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132

    PubMed  CAS  Google Scholar 

  • Pledger RJ, Crump BC, Baross JA (1994) A barophilic response by two hyperthermophilic, hydrothermal vent archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol Ecol 14:233–242

    Article  Google Scholar 

  • Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) A genomic analysis of the archaeal system Ignicoccus hospitalisNanoarchaeum equitans. Genome Biol 9:R158

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Esposito E, Orlando P, Lama L, Giordano A, De Appolonia F, Nicolaus B, Gambacorta A (2007) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Ceschi Berrini C (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874

    Article  PubMed  Google Scholar 

  • Prevost S, Andre S, Remize F (2010) PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage. Curr Microbiol 61:525–533

    Article  PubMed  CAS  Google Scholar 

  • Prieur D, Erauso G, Jeanthon C (1995) Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122

    Article  PubMed  CAS  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2009) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 104:420–428

    Google Scholar 

  • Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266

    Article  PubMed  CAS  Google Scholar 

  • Ramos J-L, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890

    Article  PubMed  CAS  Google Scholar 

  • Ramos J-L, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329

    PubMed  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  PubMed  CAS  Google Scholar 

  • Ray MK, Kumar GS, Janiyani K, Kannan K, Jagtap P, Basu MK, Shivaji S (1998) Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J Biosci 23:423–435

    Article  CAS  Google Scholar 

  • Rettberg P, Rabbow E, Panitz C, Horneck G (2004) Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Adv Space Res 33:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 4(1):5

    Article  CAS  Google Scholar 

  • Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, Allen EE, Felbeck H (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10:727–737

    Article  PubMed  CAS  Google Scholar 

  • Roeßler M, Müller V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184:6207–6215

    Article  PubMed  CAS  Google Scholar 

  • Romano I, Dipasquale L, Orlando P, Lama L, d'Ippolito G, Pascual J, Gambacorta A (2010) Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles 14:233–240

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:362–373

    Google Scholar 

  • Ruger H-J, Fritze D, Sproer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Evol Microbiol 50:1305–1313

    PubMed  CAS  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol 118:489–493

    Article  PubMed  CAS  Google Scholar 

  • Salameh MA, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol Chapter 7 61:253–283

    Article  PubMed  CAS  Google Scholar 

  • Sancho LG, De la Torre R, Horneck G, Ascaso C, De Los RA, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454

    Article  PubMed  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  PubMed  CAS  Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  PubMed  CAS  Google Scholar 

  • Sass H, Berchtold M, Branke J, Konig H, Cypionka H, Babenzien H-D (1998) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21:212–219

    PubMed  CAS  Google Scholar 

  • Schleper C, Puehler G, Kuhlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742

    Article  PubMed  CAS  Google Scholar 

  • Schut F, Prins RA, Gottschal JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202

    Article  Google Scholar 

  • Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enz Microbial Tech 25:471–482

    Article  CAS  Google Scholar 

  • Semenov AM (1991) Physiological bases of oligotrophy of microorganisms and the concept of microbial community. Microb Ecol 22:239–247

    Article  Google Scholar 

  • Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol Symp Suppl 76:49S–60S

    Google Scholar 

  • Shashidhar R, Bandekar JR (2009) Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 59:2714–2717

    Google Scholar 

  • Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles 12:375–381

    Article  PubMed  CAS  Google Scholar 

  • Shock EL (1997) High temperature life without photosynthesisias a model for Mars. J Geophys Res Planets 102:23687–23694

    Article  CAS  Google Scholar 

  • Shumkova GA, Papova LG, Balnokin YV (2000) Export of Na+ from cells of the halotolerant microalga Dunaliella maritima: Na+/H+ antiporter or primary Na+-pump? Biochem-Moscow 65:917–923

    CAS  Google Scholar 

  • Shuryak I, Brenner DJ (2010) Effects of radiation quality on interactions between oxidative stress, protein and DNA damage in Deinococcus radiodurans. Radiat Environ Biophys 49:693–703

    Article  PubMed  CAS  Google Scholar 

  • Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodivers Conserv 5:1337–1363

    Article  Google Scholar 

  • Singh G, Ahuja N, Batish M, Capalash N, Sharma P (2008) Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology. Bioresour Technol 99:7472–7479

    Article  PubMed  CAS  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184

    Google Scholar 

  • Smith DJ, Schuerger AC, Davidson MM, Pacala SW, Bakermans C, Onstott TC (2009) Survivability of Psychrobacter cryohalolentis K5 under simulated Martian surface conditions. Astrobiology 9:221–228

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Muyzer G (2010a) Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles 14:349–355

    Google Scholar 

  • Sorokin DY, Muyzer G (2010b) Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov. Extremophiles 14:313–320

    Article  CAS  Google Scholar 

  • Sorokin DY, Trotsenko YA, Doronina NV, Tourova TP, Galinski EA, Kolganova TV, Muyzer G (2007) Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes. Int J Syst Evol Microbiol 57:2762–2769

    Article  PubMed  CAS  Google Scholar 

  • Sproessler BG (1993) Milling and baking. In: Nagodawithana T, Reed G (eds) Enzymes in food processing. Academic, New York, pp 293–320

    Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Ann Rev Microbiol 53:189–215

    Article  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Stevens T (1997) Lithoautotrophy in the subsurface. FEMS Microbiol Rev 20:327–337

    Article  CAS  Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  PubMed  CAS  Google Scholar 

  • Summit M, Scott B, Nielson K, Mathur E, Baross J (1998) Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2:339–345

    Article  PubMed  CAS  Google Scholar 

  • Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16:193–202

    Article  Google Scholar 

  • Takahara T, Tanabe O (1960) Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38:324–331

    Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. PNAS 105:10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Tang K, Zong R, Zhang F, Xiao N, Jiao N (2009) Characterization of the photosynthetic apparatus and proteome of Roseobacter denitrificans. Curr Microbiol 60:124–133

    Article  PubMed  CAS  Google Scholar 

  • Teske AP (2005) The deep subsurface biosphere is alive and well. Trends Microbiol 19:402–404

    Article  CAS  Google Scholar 

  • Tiquia SM, Mormile MR (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31:823–830

    Article  PubMed  CAS  Google Scholar 

  • Tsubata T, Tezuka T, Kurane R (1997) Change of cell membrane hydrophobicity in a bacterium tolerant to toxic alcohols. Can J Microbiol 43:295–299

    Article  CAS  Google Scholar 

  • Ueno S, Kaieda N, Koyama N (2000) Characterization of a P-type Na+-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. J Biol Chem 275:14537–14540

    Article  PubMed  CAS  Google Scholar 

  • Unemoto T (2000) Bioenergetics of marine bacteria—respiration-coupled Na+ pump. Yakugaku Zasshi 120:16–27

    PubMed  CAS  Google Scholar 

  • Unemoto T, Hayashi M (1993) Na+ translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25:385–391

    Article  PubMed  CAS  Google Scholar 

  • Vainshtein MB, Kudryashova EB (2000) Nanobacteria. Microbiol 69:129–138

    Article  CAS  Google Scholar 

  • Van Benthem R, Krooneman J, De Grave W, Hammenga-Dorenbos H (2009) Thermal design and turbidity sensor for autonomous bacterial growth measurements in spaceflight. Ann NY Acad Sci 1161:147–165

    Article  PubMed  Google Scholar 

  • Van-Thuoc D, Quillaguamán J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    PubMed  CAS  Google Scholar 

  • Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek J Microbiol Serol 1:143–147

    Google Scholar 

  • Ventosa A, Marquez MC, Garabito MJ, Arahal DR (1998a) Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2:297–304

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998b) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  Google Scholar 

  • Vieille C, Zeikus JG (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Villar SE, Edwards HG (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113

    Article  CAS  Google Scholar 

  • Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495

    Article  CAS  Google Scholar 

  • Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann NY Acad Sci 1125:1–43

    Article  PubMed  CAS  Google Scholar 

  • Wainwright M, Brakah F, Al-Turk I, Ta A (1991) Oligotrophic microorganisms in industry, medicine and the environment. Sci Prog 75:313–322

    PubMed  CAS  Google Scholar 

  • Wainwright M, Tasneem AA, Barakah F (1993) A review of the role of oligotrophic microorganisms in biodeterioration. Int Biodeterior Biodegrad 31:1–13

    Article  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Wettergreen D, Cabrol N, Baskaran V, Calderón F, Heys S, Jonak D, Lüders A, Pane D, Smith T, Teza J, Tompkins P, Villa D, Williams C, Wagner M (2005) Second experiments in the robotic investigation of life in the Atacama desert of Chile. Appl Environ Microbiol 72:7902–7908

    Google Scholar 

  • Wiegel J (1990) Temperature spans for growth: a hypothesis and discussion. FEMS Microbiol Rev 75:155–170

    Google Scholar 

  • Wiegel J (1992) The obligately anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC, Boca Raton, pp 105–184

    Google Scholar 

  • Wiegel J (1998) Anaerobic alkalithermohiles, a novel group of extremophiles. Extremophiles 2:257–267

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Adams MWW (1998) Thermophiles—the keys to molecular evolution and the origin of life? Taylor and Francis, London

    Google Scholar 

  • Wiegel J, Canganella F (2000) Extreme thermophiles. Encyclopedia of Life Sciences, Nature Publishing Group

  • Wiegel J, Ljungdahl LG (1996) The importance of thermophilic bacteria in biotechnology. CRS-Rev Biotech 3:39–107

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075

    Article  CAS  Google Scholar 

  • Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485

    PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361

    PubMed  CAS  Google Scholar 

  • Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Zhang W, Dai S, Wu J, Wang Y, Tao T, Chen M, Lin M (2009) Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 59:1513–1517

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ, Zhang YQ, Xu LH, Jiang CL (2007) Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375

    Article  PubMed  CAS  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Chi ZM, Zhou PJ, Yu Y (2008a) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466

    Article  CAS  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Liu HC, Chi ZM, Zhou PJ, Yu Y (2008b) Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1384–1387

    Article  CAS  Google Scholar 

  • Zhang G, Jiang N, Liu X, Dong X (2008c) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:6114–6120

    Article  CAS  Google Scholar 

  • Zhang GI, Hwang CY, Kang SH, Cho BC (2009) Maribacter antarcticus sp. nov., a psychrophilic bacterium isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 59:1455–1459

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA (1996) Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326

    Article  PubMed  CAS  Google Scholar 

  • Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF, Tang B (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis. Biotechnol Bioeng 104:862–870

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Zhang R, Hu P, Zeng W, Xie Y, Wu C, Qiu G (2008) Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J Appl Microbiol 105:591–601

    Article  PubMed  CAS  Google Scholar 

  • Zobell CE, Morita RY (1957) Barophilic bacteria in some deep-sea sediments. J Bacteriol 73:563–568

    PubMed  CAS  Google Scholar 

  • Zolensky ME (2005) Extraterrestrial water. Elements 1:39–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Canganella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canganella, F., Wiegel, J. Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98, 253–279 (2011). https://doi.org/10.1007/s00114-011-0775-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-011-0775-2

Keywords

Navigation