Skip to main content
Log in

Biosemiotics: a new understanding of life

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes—copying and coding—and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Augustine of Hippo (389 AD) De Doctrina Christiana. In: Green WM (ed) Sancti Augustini Opera, 1963, CSEL 80, Vienna

  • Barbieri M (1981) The ribotype theory on the origin of life. J Theor Biol 91:1545–601

    Article  Google Scholar 

  • Barbieri M (1985) The semantic theory of evolution. Harwood Academic, London

    Google Scholar 

  • Barbieri M (1998) The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum 91:481–514

    CAS  Google Scholar 

  • Barbieri M (2003a) The organic codes. an introduction to semantic biology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Barbieri M (2003b) Biology with information and meaning. Hist Philos Life Sci 25:243–254

    Article  PubMed  Google Scholar 

  • Barbieri M (2004) The definitions of information and meaning. Two possible boundaries between physics and biology. Rivista di Biologia-Biology Forum 97:91–110

    Google Scholar 

  • Barbieri M (2008) The codes of life. the rules of macroevolution. Springer, Dordrecht

    Google Scholar 

  • Battail G (2006) Should genetics get an information-theoretic education. IEEE Eng Med Biol Mag 25(1):34–45

    Article  PubMed  Google Scholar 

  • Battail G (2007) Information theory and error-correcting codes in genetics and biological evolution. In: Barbieri M (ed) Introduction to biosemiotics. Springer, Dordrecht, pp 299–345

    Chapter  Google Scholar 

  • Beadle G, Beadle M (1966) The language of life. an introduction to the science of genetics. Doubleday, New York

    Google Scholar 

  • Berridge M (1985) The molecular basis of communication within the cell. Sci Am 253:142–152

    Article  PubMed  CAS  Google Scholar 

  • Boniolo G (2003) Biology without information. Hist Philos Life Sci 25:255–273

    Article  PubMed  Google Scholar 

  • Bruni LE (2007) Cellular semiotics and signal transduction. In: Barbieri M (ed) Introduction to biosemiotics. Springer, Dordrecht, pp 365–407

    Chapter  Google Scholar 

  • Chargaff E (1963) Essays on nucleic acids. Elsevier, Amsterdam

    Google Scholar 

  • Chomsky N (1975) Reflections on language. Pantheon, New York

    Google Scholar 

  • Cowley SJ (2008) The codes of language: turtles all the way up? In: Barbieri M The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 319–345

    Chapter  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • Deacon TW (1997) The symbolic species: the co-evolution of language and the brain. Norton, New York

    Google Scholar 

  • Deely J (2006) On ‘semiotics’ as naming the doctrine of signs. Semiotica 158:1–33

    Article  Google Scholar 

  • Dehaene S, Cohen L, Sigman M, Vinckier F (2005) The neural code for written words: a proposal. Trends Cogn Sci 9:335–341

    Article  PubMed  Google Scholar 

  • de Saussure F (1916) Cours de linguistique générale. Payot, Paris

    Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  • Faria M (2007) RNA as code makers: a biosemiotic view of RNAi and cell immunity. In: Barbieri M Introduction to biosemiotics. Springer, Dordrecht, pp 347–364

    Chapter  Google Scholar 

  • Faria M (2008) Signal transduction codes and cell fate. In: Barbieri M The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 265–283

    Chapter  Google Scholar 

  • Favareau D (2007) The evolutionary history of biosemiotics. In: Barbieri M Introduction to biosemiotics. Springer, Dordrecht, pp 1–67

    Chapter  Google Scholar 

  • Flames N, Pla R, Gelman DM, Rubenstein JLR, Puelles L, Marin O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27(36):9682–9695

    Article  PubMed  CAS  Google Scholar 

  • Florkin M (1974) Concepts of molecular biosemiotics and molecular evolution. In: Florkin M Stotz EH (ed) Comprehensive biochemistry, vol. 29A. Elsevier, Amsterdam, pp 1–124

    Google Scholar 

  • Forsdyke R (2006) Evolutionary bioinformatics. Springer, New York

    Google Scholar 

  • Gabius H-J (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    Article  PubMed  CAS  Google Scholar 

  • Gabius H-J, André S, Kaltner H, Siebert H-C (2002) The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177

    PubMed  CAS  Google Scholar 

  • Gamble MJ, Freedman LP (2002) A coactivator code for transcription. Trends Biochem Sci 27(4):165–167

    Article  PubMed  CAS  Google Scholar 

  • Gimona M (2008) Protein linguistics and the modular code of the cytoskeleton. In: Barbieri M The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 189–206

    Chapter  Google Scholar 

  • Gonzalez DL (2008) Error detection and correction codes. In: Barbieri M The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 379–394

    Chapter  Google Scholar 

  • Griffith PE (2001) Genetic information: a metaphor in search of a theory. Philos Sci 68:394–412

    Article  Google Scholar 

  • Griffith PE, Knight RD (1998) What is the developmental challenge? Philos Sci 65:276–288

    Article  Google Scholar 

  • Hoffmeyer J (1996) Signs of meaning in the universe. Indiana University Press, Bloomington

    Google Scholar 

  • Hoffmeyer J (2008) A legacy for living systems. gregory bateson as precursor to biosemiotics. Springer, Dordrecht

    Google Scholar 

  • Jacob F (1982) The possible and the actual. Pantheon Books, New York

    Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Genet 1:20–29

    Article  CAS  Google Scholar 

  • Johannsen W (1909) Elemente der exacten Erblichkeitslehre. Gustav Fischer, Jena

    Google Scholar 

  • Khidekel N, Hsieh-Wilson LC (2004) A ‘molecular switchboard’—covalent modifications to proteins and their impact on transcription. Org Biomol Chem 2:1–7

    Article  PubMed  CAS  Google Scholar 

  • Khorana HG, Büchi H, Ghosh H, Gupta N et al (1966) Polynucleotide synthesis and the genetic code. Cold Spring Harb Symp Quant Biol 31:39–49

    PubMed  CAS  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S et al (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:553–544

    Article  CAS  Google Scholar 

  • Krampen M (1981) Phytosemiotics. Semiotica 36(3/4):187–209

    Google Scholar 

  • Kull K (1999) Biosemiotics in the twentieth century: a view from biology. Semiotica 127(1/4):385–414

    Google Scholar 

  • Küppers B-O (1990) Information and the origin of life. MIT, Cambridge Mass

    Google Scholar 

  • Küppers B-O (1992) Understanding complexity. In: Beckermann A, Flohr H, Kim J (eds) Emergence or reduction? Essays on the prospects of nonreductive physicalism. Walter de Gruyter, Berlin, pp 241–256

    Google Scholar 

  • Leader JE, Wang C, Popov V, Fu M, Pestell RG (2006) Epigenetics and the estrogen receptor. Ann NY Acad Sci 1089:73–87

    Article  PubMed  CAS  Google Scholar 

  • Mahner M, Bunge M (1997) Foundations of biophilosophy. Springer, Berlin

    Google Scholar 

  • Maraldi NM (2008) A lipid-based code in nuclear signalling. In: Barbieri M (ed) the codes of life: the rules of macroevolution. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Markoš A (2002) Readers of the book of life: conceptualizing developmental evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Neuman Y (2008) The immune self code: from correspondence to complexity. In: Barbieri M The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 247–263

    Chapter  Google Scholar 

  • Nirenberg M, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47:1588–1602

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg M, Caskey T, Marshal R, Brimacombe R et al (1966) The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol 31:11–24

    PubMed  CAS  Google Scholar 

  • Pattee HH (1969) The physical basis of coding and reliability in biological evolution. In: Waddington CH (ed) Toward a theoretical biology, vol. 1. Edinburgh University Press, Edinburgh, UK, pp 67–93

    Google Scholar 

  • Pattee HH (1972) Laws and constraints, symbols and languages. In: Waddington CH (ed) Towards a theoretical biology, vol. 4. Edinburgh University Press, Edinburgh, UK, pp 248–258

    Google Scholar 

  • Pattee HH (2001) The physics of symbols: bridging the epistemic cut. BioSystems 60:5–21

    Article  PubMed  CAS  Google Scholar 

  • Peirce CS (1931–1958) Collected papers of Charles Sanders Peirce. Harvard University Press, Cambridge Massachusetts

    Google Scholar 

  • Perissi V, Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Molecular Cell Biology 6:542–554

    Article  CAS  Google Scholar 

  • Posner R, Robering K, Sebeok TA (1997) Semiotik/semiotics: a handbook on the sign-theoretical foundations of nature and culture, vol. 1. Walter de Gruyter, Berlin, p p4

    Google Scholar 

  • Prodi G (1988) Material bases of signification. Semiotica 69(3/4):191–241

    Article  Google Scholar 

  • Readies C, Takeichi M (1996) Cadherine in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev Biol 180:413–423

    Article  Google Scholar 

  • Reybrouck M (2008) The musical code between nature and nurture. In: Barbieri M The codes of life: the rules of macroevolution. Springer, Dordrecht, pp 395–434

    Chapter  Google Scholar 

  • Rothschild FS (1962) Laws of symbolic mediation in the dynamics of self and personality. Ann NY Acad Sci 96:774–784

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S (1996) Biological information. a skeptical look at some central dogmas of molecular biology. In: Sarkar S The philosophy and history of biology. Kluwer Academic, Dordrecht, pp 187–231

    Google Scholar 

  • Sarkar S (2000) Information in genetics and developmental biology. Philos Sci 67:208–213

    Article  Google Scholar 

  • Schrödinger E (1944) What is life? Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Scully KM, Rosenfeld MG (2002) Pituitary development: regulatory codes in mammalian organogenesis. Science 295:2231–2235

    Article  PubMed  CAS  Google Scholar 

  • Sebeok TA (1963) Communication among social bees; porpoises and sonar; man and dolphin. Language 39:448–466

    Article  Google Scholar 

  • Sebeok TA (1972) Perspectives in zoosemiotics. Mouton, The Hague

    Google Scholar 

  • Sebeok TA (2001) Biosemiotics: its roots, proliferation, and prospects. In: Kull K (ed) Jakob von Uexküll: A paradigm for biology and semiotics. Semiotica 134(1/4), pp 61–78

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27::379–424:623–656

    Google Scholar 

  • Shapiro L, Colman DR (1999) The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 23:427–430

    Article  PubMed  CAS  Google Scholar 

  • Sonea S (1988) The global organism: a new view of bacteria. The Sciences 28(4):38–45

    Google Scholar 

  • Speyer J, Lengyel P, Basilio C, Wahba A, Gardner R, Ochoa S (1963) Synthetic polinucleotides and the amino acid code. Cold Spring Harb Symp Quant Biol 28:559–567

    CAS  Google Scholar 

  • Stent GS, Calendar R (1978) Molecular genetics. W.H. Freeman, San Francisco

    Google Scholar 

  • Stepanov YS (1971) Semiotika. Nauka, Moscow

    Google Scholar 

  • Strahl BD, Allis D (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Sutherland EW (1972) Studies on the mechanism of hormone action. Science 177:401–408

    Article  PubMed  CAS  Google Scholar 

  • Taborsky E (1999) Semiosis: the transformation of energy into information. Semiotica 127:599–646

    Article  Google Scholar 

  • Taborsky E (2002) Energy and evolutionary semiosis. Sign Systems Studies 30(1):361–381

    Google Scholar 

  • Tootle TL, Rebay I (2005) Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. BioEssays 27:285–298

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN (1987) Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. J Mol Biol 194:643–652

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN (1989) The multiple codes of nucleotide sequences. Bull Math Biol 51:417–432

    PubMed  CAS  Google Scholar 

  • Trifonov EN (1996) Interfering contexts of regulatory sequence elements. Cabios 12:423–429

    PubMed  CAS  Google Scholar 

  • Trifonov EN (1999) Elucidating sequence codes: three codes for evolution. Ann NY Acad Sci 870:330–338

    Article  PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. BioEssay 22:836–845

    Article  CAS  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  PubMed  CAS  Google Scholar 

  • von Uexküll J (1928) Theoretische Biologie 2te Auflage. Julius Springer, Berlin

    Google Scholar 

  • Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribose nucleic acid. Nature 71:964–96

    Article  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  • Yockey HP (2005) Information theory, evolution, and the origin of life. Cambridge University Press, Cambridge, UK

    Google Scholar 

Download references

Acknowledgments

I am deeply grateful to Tatiana Czeschlik for the invitation to write this review and to Dorothea Kessler for her exquisite editorial assistance. The first draft has been substantially improved by the suggestions of four anonymous referees, and I wish to publicly thank each and all of them for their most welcome help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, M. Biosemiotics: a new understanding of life. Naturwissenschaften 95, 577–599 (2008). https://doi.org/10.1007/s00114-008-0368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0368-x

Keywords

Navigation