Skip to main content
Log in

S1-Leitlinie Intermittierende Pneumatische Kompression (IPK, AIK)

S1 guideline on intermittent pneumatic compression (IPC)

  • Leitlinien und Empfehlungen
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Unter Federführung der Deutschen Gesellschaft für Phlebologie e. V. (DGP) wurde im Januar 2018 in Kooperation mit weiteren Fachgesellschaften eine S1-Leitlinie zur intermittierenden pneumatischen Kompression (IPK) verabschiedet. Sie ersetzt die bisher existierende Leitlinie von 3/2005. Ziel der Leitlinie ist die Optimierung der Indikation und der therapeutischen Anwendung der IPK bei Gefäß- und Ödemerkrankungen. Es erfolgte eine ausgedehnte Literaturrecherche unter Berücksichtigung von Medline, existierenden Leitlinien sowie für das Thema relevanten, aber nicht gelisteten Arbeiten. Angesichts der vielfach methodisch schwachen Studienqualität mit oft kleinen Fallzahlen und heterogenen Behandlungsprotokollen lassen sich aus den vorhandenen Daten oft nur Empfehlungen unter Hinzuziehung der guten klinischen Praxis/Expertenkonsensus ableiten. Die apparative Anwendung pneumatischer Wechseldrücke dient der Thromboembolieprophylaxe, Entstauungstherapie bei Ödemerkrankungen und der positiven Beeinflussung der arteriellen und venösen Durchblutung mit Verbesserung der klinischen Symptome und schnellerer Ulkusheilung im ambulanten und stationären Bereich. Die eingesetzten Geräte und die Therapieschemata unterscheiden sich abhängig von ihrer Indikation und Ziellokalisation. Sie können ambulant und stationär sowie bei langfristiger Indikation auch als Heimgeräte eingesetzt werden. Eine Soll-Indikation besteht bei der Thromboseprophylaxe. Bei schwerer chronisch venöser Insuffizienz im Stadium C4b bis C6, beim Extremitätenlymphödem additiv und bei peripherer arterieller Verschlusskrankheit (pAVK) mit stabiler Claudicatio intermittens oder kritischer Ischämie sollte die IPK eingesetzt werden Bei posttraumatischen Ödemen, therapieresistenten venös bedingten Ödemen, beim Lipödem und bei Hemiplegie mit sensorischer Störung und Ödem kann die IPK zum Einsatz kommen. Absolute und relative Kontraindikationen zur IPK müssen berücksichtigt und Risiken beachtet und – soweit möglich – vermieden werden. Unerwünschte Ereignisse treten bei korrekter Anwendung der IPK extrem selten auf. Sie ist bei richtiger Indikationsstellung und Anwendung – auch additiv – eine effektive und sichere Therapiemethode insbesondere in der Behandlung der beschriebenen Gefäß- und Ödemerkrankungen sowie der Thromboseprophylaxe.

Abstract

Under the direction of the German Society of Phlebology (Deutsche Gesellschaft für Phlebologie) and in cooperation with other specialist associations, the S1 guideline on intermittent pneumatic compression (IPC) was adopted in January 2018. It replaces the previous guideline from March 2005. The aim of the guideline is to optimize the indication and therapeutic use of IPC in vascular diseases and edema. An extensive literature search of MEDLINE, existing guidelines, and work relevant to the topic was performed. In view of the often methodologically weak study quality with often small numbers of cases and heterogeneous treatment protocols, recommendations can often only be derived from the available data using good clinical practice/expert consensus. Intermittent pneumatic compression is used for thromboembolism prophylaxis, decongestive therapy for edema, and to positively influence arterial and venous circulation to improve clinical symptoms and accelerate ulcer healing in both the outpatient and inpatient care setting. The therapy regimens and devices used depend on the indication and target location. They can be used as outpatient and inpatient devices as well as at home for long-term indications. A target indication is thrombosis prophylaxis. IPC should be used in severe chronic venous insufficiency (stages C4b to C6), in extremity lymphedema as an add-on therapy and in peripheral arterial occlusive disease (PAOD) with stable intermittent claudication or critical ischemia. IPC can be used in post-traumatic edema, therapy-resistant venous edema, lipedema and hemiplegia with sensory deficits and edema. Absolute and relative contraindications to IPC must be taken into account and risks considered and avoided as far as possible. Adverse events are extremely rare if IPC is used correctly. If the indication and application are correct—also as an add-on therapy—it is a safe and effective treatment method, especially for the treatment of the described vascular diseases and edema as well as thrombosis prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Adams KE, Rasmussen JC, Darne C (2010) Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema. Biomed Opt Expr 1(1):114

    Article  Google Scholar 

  2. Airaksinen O, Kolari TJ, Miettinen H (1990) Elastic bandages and intermittent pneumatic compression for treatment of acute ankle sprains. Arch Phys Med Rehabil 71:380–383

    PubMed  CAS  Google Scholar 

  3. Almstedt HC, Lewis ZH (2016) Intermittent pneumatic compression and Bone mineral density: an exploratory study. J Sport Rehabil 25(1):1–6

    Article  PubMed  Google Scholar 

  4. Alvarez O, Wendelken M, Markowitz L, Parker R, Comfort C (2012) Effectiveness of intermittent pneumatic compression for the treatment of venous ulcers in subjects with secondary (acquired) lymphedema. Vein 5(1):32–34

    Google Scholar 

  5. Alvarez OM, Wendelken ME, Markowitz L, Comfort C (2015) Effect of high-pressure, intermittent pneumatic compression for the treatment of peripheral arterial disease and critical limb ischemia in patients without a surgical option. Wounds 27(11):293–301

    PubMed  Google Scholar 

  6. Anand A (2000) Complications associated with intermittent pneumatic compression device. Anesthesiology 93:1556–1557

    Article  PubMed  CAS  Google Scholar 

  7. Arcelus JI, Caprini JA, Sehgal IR, Reyna JJ (2001) Home use of impulse compression of the foot and compression stockings in the treatment of chronic venous insufficiency. J Vasc Surg 34(5):805

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong DG, Nguyen HC (2000) Intermittent pneumatic compression promoted healing in foot infections. Arch Surg 135:1405–1409

    Article  PubMed  CAS  Google Scholar 

  9. van Bemmelen PS, Choudry RG, Salvatore MD, Goldenberg M, Goldman BI, Blebea J (2007) Long-term intermittent compression increases arteriographic collaterals in a rabbit model of femoral artery occlusion. Eur J Vasc Endovasc Surg 34(3):340–346

    Article  PubMed  Google Scholar 

  10. Bergan JJ, Sparks S, Angle N (1998) A comparison of compression pumps in the treatment of lymphedema. J Vasc Surg 32:455–462

    Article  Google Scholar 

  11. Berliner E, Ozbilgin B, Zarin DA (2003) A systemic review of pneumatic compression for treatment of chronic venous insufficiency and venous ulcers. J Vasc Surg 37:539–544

    Article  PubMed  Google Scholar 

  12. Berni A, Tromba L, Falvo L, Tartaglia F, Sgueglia M, Blasi S, Polichetti P (2009) Randomized study on the effects of different strategies of intermittent pneumatic compression for lower limb claudication. G Chir 30(6–7):269–273

    PubMed  CAS  Google Scholar 

  13. Boris M, Weindorf S, Lasinski BB (1998) The risk of genital edema after external pump compression for lower limb lymphedema. Lymphology 31:15–20

    PubMed  CAS  Google Scholar 

  14. Breu FX, Zelikovski A, Loberman Z, Rauh G (2014) Wirksamkeit und Sicherheit einer neuen pneumatischen Kompressionstherapie bei peripherer arterieller Verschlusskrankheit mit Claudicatio intermittens. Phlebologie 43:5–11

    Article  Google Scholar 

  15. Cambier DL, De Corte E, Daniels LA et al (2003) Treating sensory impairment in the post-stoke upper limb with intermittent pneumatic compression. Clin Rehabil 17:14–20

    Article  PubMed  CAS  Google Scholar 

  16. Carli AB, Kaya E, Turgut H, Selek MB (2014) Letter to the editor. Folliculitis associated with intermittent pneumatic compression. Yonsei Med J 55:545–554

    Article  PubMed Central  Google Scholar 

  17. Caschman J, Blagg S, Bishay M (2004) The efficacy of the A‑V Impulse system in the treatment of posttraumatic swelling following ankle fracture: a prospective randomized controlled study. J Orthop Trauma 18(9):596–601

    Article  PubMed  CAS  Google Scholar 

  18. Challis MJ, Jull GJ, Stanton WR, Welsh MK (2007) Cyclic pneumatic soft-tissue compression enhances recovery following fracture of the distal radius: a randomised controlled trial. Aust J Physiother 53(4):247–252

    Article  PubMed  Google Scholar 

  19. Chang ST, Hsu JT, Chu CM, Pan KL, Jang SJ, Lin PC, Hsu HC, Huang KC (2012) Using intermittent pneumatic compression therapy to improve quality of life for symptomatic patients with infrapopliteal diffuse peripheral obstructive disease. Circ J 76(4):971–976

    Article  PubMed  CAS  Google Scholar 

  20. Coleridge Smith P, Sarin S, Hasty J, Scurr JH (1990) Sequential gradient pneumatic compression: enhances venous ulcer healing:a randomized trial. Surgery 108:871–875

    Google Scholar 

  21. Coleridge Smith P, Sarin S, Hasty J, Scurr JH (1988) Improved venous ulcer healing using intermittent pneumatic compression. Phlebologie 41(4):788–789

    Google Scholar 

  22. Comerota AJ (2011) Intermittent pneumatic compression: physiologic and clinical basis to improve management of venous leg ulcers. J Vasc Surg 53(4):1121–1129

    Article  PubMed  Google Scholar 

  23. Dabrh AAM, Steffen MW, Asi N, Undavalli C, Wang Z, Elamin MB, Conte MS, Murad MH (2015) Nonrevascularization-based treatments in patients with severe or critical limb ischemia. J Vasc Surg 62(5):1330–1339

    Article  PubMed  Google Scholar 

  24. Dahl J, Li J, Bring DK, Renström P, Ackermann PW (2007) Intermittent pneumatic compression enhances neurovascular ingrowth and tissue proliferation during connective tissue healing: a study in the rat. J Orthop Res 25(9):1185–1192

    Article  PubMed  Google Scholar 

  25. Delis KT, Nicolaides AN, Wolfe JH et al (2000) Improving walking ability and ankle brachial pressure indices in symptomatic peripheral vascular disease with intermittent pneumatic foot compression. J Vasc Surg 31:650–661

    Article  PubMed  CAS  Google Scholar 

  26. Delis KT, Nicolaides N (2005) Effect of intermittent pneumatic compression of foot and calf on walking distance, hemodynamics and quality of life in patients with arterial claudication. Ann Surg 241:431–441

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deutsche Diabetes Gesellschaft, Evidenzbasierte Diabetes-Leitlinie DDG (2016) Diabetisches Fußsyndrom, Update 2008, Diagnostik, Therapie, Verlaufskontrolle und Prävention des diabetischen Fußsyndroms. https://www.kvwl.de/arzt/recht/.../diabetes_fuss_anlage_01.pdf. Zugegriffen: 26.06.2017

    Google Scholar 

  28. Deutsche Diabetes Gesellschaft, Nationale Versorgungsleitlinie Typ-2-Diabetes: Präventions-und Behandlungsstrategien für Fußkomplikationen, NVL-Programm Stand 30.11.2006, Registernummer nvl-001c

  29. Deutsche Gesellschaft für Lymphologie und Gesellschaft Deutschsprachiger Lymphologen. S2k Leitlinie „Diagnostik und Therapie des Lymphödems“ AWMF Reg.- Nr. 058–001. Stand Mai 2017.

  30. Deutsche Gesellschaft für Phlebologie. (2015) S1-Leitlinie Lipödem AWMF Registernummer 037–012 ICD 10

    Google Scholar 

  31. Deutsche Gesellschaft für Wundheilung und Wundbehandlung e. V. (2012) Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronische venöse Insuffizienz. AWMF-Register Nr. 091/001 Klasse, S 3

    Google Scholar 

  32. Dillon RS (1986) Treatment of resistant venous stasis ulcers and dermatitis with the enddiastolic pneumatic compression boot. Angiology 37:47–56

    Article  PubMed  CAS  Google Scholar 

  33. Dini D, Del Mastro L, Gozza A et al (1998) The role of pneumatic compression in the treatment of postmastectomy lymphedema: a randomized phase III study. Ann Oncol 9:187–190

    Article  PubMed  CAS  Google Scholar 

  34. Dodds MK, Daly ABA, Ryan K, D’Souza L (2014) Effectiveness of ‚in-cast‘ pneumatic intermittent pedal compression for the pre-operative management of closed ankle fractures: a clinical audit. Foot Ankle Surg 20:40–43

    Article  PubMed  CAS  Google Scholar 

  35. Dolibog P, Franek A, Taradaj J, Dolibog P, Blaszczak E, Polak A, Brzezinska-Wcislo L, Hrycek A, Urbanek T, Ziaja J, Kolanko M (2013) A comparative clinical study on five types of compression therapy in patients with venous leg ulcers. Int J Med Sci 11(1):34–43

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dolibog P, Franek A, Taradaj J, Polak A, Dolibog P, Blaszczak E, Wcislo L, Hrycek A, Urbanek T, Ziaja J, Kolanko M (2013) A randomized, controlled clinical pilot study comparing three types of compression therapy to treat venous leg ulcers in patients with superficial and/or segmental deep venous reflux. Ostomy Wound Manage 59(8):22–30

    PubMed  Google Scholar 

  37. Doyle S, Bennett S, Fasoli SE, McKenna KT (2010) Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006331.pub2 (Review)

    Article  PubMed Central  PubMed  Google Scholar 

  38. Encke A, Haas S, Kopp I et al (2017) S3-Leitlinie Prophylaxe der venösen Thromboembolie (VTE). AWMF Leitlinien-Register Nr. 003/001. www.awmf.org/leitlinien/detail/II/003-001

    Google Scholar 

  39. Feldman JL, Stout NL, Wanchai A, Stewart BR, Cormier JN, Armer JM (2012) Intermittent pneumatic compression therapy: a systemic review. Lymphology 45:13–15

    PubMed  CAS  Google Scholar 

  40. Finnane A, Janda M, Hayes SC (2015) Review of the evidence of lymphedema treatment effect. Am J Phys Med Rehabil 94(6):483–498

    Article  PubMed  Google Scholar 

  41. Ginsberg JS, Magier D, Mackinnon B et al (1999) Intermittent compression units for severe post-phlebitic syndrome: a randomized crossover study. CMAJ 160:1303–1306

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Ginsberg JS, Brill-Edwards P, Kowalchuk G, Hirsh J (1989) Intermittent compression units for the postphlebitic Syndrome. A pilot study. Arch Intern Med 149:1651

    Article  PubMed  CAS  Google Scholar 

  43. GKV Spitzenverband. Hilfsmittelverzeichnis. https://hilfsmittel.gkv-spitzenverband.de/hmvAnzeigen_input.action, Zugriff vom 20. Juni 2017 und

  44. Grieveson S (2003) Intermittent pneumatic compression pump settings for the optimum reduction of oedema. J Tissue Viability 13:98–110

    Article  PubMed  Google Scholar 

  45. Griffin M, Kakkos SK, Geroulakos G, Nicolaides AN (2007) Comparison of three intermittent pneumatic compression systems in patients with varicose veins: a hemodynamic study. Int Angiol 26(2):158–164

    PubMed  CAS  Google Scholar 

  46. Haghighat S, Lotfi-Tokaldany M, Yunesian M, Akbari ME, Nazemi F, Weiss J (2010) Comparing two treatment methods for post mastectomy lymphedema: complex decongestive therapy alone and in combination with intermittent pneumatic compression. Lymphology 43(1):25–33

    PubMed  CAS  Google Scholar 

  47. Handoll HH, Elliott J (2015) Rehabilitation for distal radial fractures in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003324.pub3

    Article  PubMed  Google Scholar 

  48. Herpertz U (1997) Krankheitsspektrum des Lipödems an einer Lymphologischen Fachklinik – Erscheinungsformen, Mischbilder und Behandlungsmöglichkeiten. Vasomed 5:301–307

    Google Scholar 

  49. Ho CK, Sun MP, Au TW, Chiu CS (2006) Pneumatic pump reduces leg wound complications in cardiac patients. Asian Cardiovasc Thorac Ann 14(6):452–457

    Article  PubMed  Google Scholar 

  50. Husmann M, Willenberg T, Keo HH, Spring S, Kalodiki E, Delis KT (2008) Integrity of venoarteriolar reflex determines level of microvascular skin flow enhancement with intermittent pneumatic compression. J Vasc Surg 48(6):1509–1513

    Article  PubMed  Google Scholar 

  51. International Society Of Lymphology (2013) Consensus document: the diagnosis and treatment of peripheral lymphedema: 2013. Lymphology 46:1–11

    Google Scholar 

  52. Kakkos SK, Nicolaides AN, Griffin M, Geroulakos G (2005) Comparison of two intermittent pneumatic compression systems. A hemodynamic study. Int Angiol 24(4):330–335

    PubMed  CAS  Google Scholar 

  53. Kavros SJ, Delis KT, Turner NS, Voll AE, Liedl DA, Gloviczki P, Rooke TW (2008) Improving limb salvage in critical ischemia with intermittent pneumatic compression: a controlled study with 18-month follow-up. J Vasc Surg 47(3):543–549

    Article  PubMed  Google Scholar 

  54. Keehan R, Guo S, Ahmad R, Bould M (2013) Impact of intermittent pneumatic foot pumps on delay to surgery following ankle fracture. Foot Ankle Surg 19:173–176

    Article  PubMed  Google Scholar 

  55. Khanna A, Gougoulias N, Maffulli N (2008) Intermittent pneumatic compression in fracture and soft-tissue injuries healing. Br Med Bull 88(1):147–156

    Article  PubMed  Google Scholar 

  56. Klein MJ, Alexander MA, Wright JM, Redmond CK, LeGasse AA (1988) Treatment of adult lower extremity lymphedema with the Wright linear pump statistical analysis of a clinical trial. Arch Phys Med Rehabil 69:202–206

    PubMed  CAS  Google Scholar 

  57. Kohl P (2010) Reducing leg oedema after femoro-popliteal bypass surgery: a challenge. Eur J Vasc Endovasc Surg 40(5):643–644

    Article  Google Scholar 

  58. Kolari PI, Pekanmaki K (1986) Intermittent pneumatic compression in healing of venous ulcers. Lancet 2:1108

    Article  PubMed  CAS  Google Scholar 

  59. Kumar S, Walker MA (2002) The effects of intermittent pneumatic compression on the arterial and venous system of the lower limb: a review. J Tissue Viability 12(2):58–60, 62–6 (Review)

    Article  PubMed  Google Scholar 

  60. Kumar S, Samraj K, Nirujogi V, Budnik J, Walker MA (2002) Intermittent pneumatic compression as an adjuvant therapy in venous ulcer disease. J Tissue Viability 12(2):42–44, 46, 48 (passim)

    Article  PubMed  Google Scholar 

  61. Labropoulos N, Leon LR Jr, Bhatti A, Melton S, Kang SS, Mansour AM, Borge M (2005) Hemodynamic effects of intermittent pneumatic compression in patients with critical limb ischemia. J Vasc Surg 42(4):710–716

    Article  PubMed  Google Scholar 

  62. Lachmann EA, Rook JL, Tunkel R et al (1992) Complications associated with intermittent pneumatic compression. Arch Phys Med Rehabil 73:482–485

    PubMed  CAS  Google Scholar 

  63. Lattimer CR, Azzam M, Kalodiki E, Xu XY, Geroulakos G (2014) Hemodynamic changes in the femoral vein with increasing outflow resistance. J Vasc Surg Venous Lymphat Disord 2(1):26–33

    Article  PubMed  Google Scholar 

  64. Lattimer CR, Kalodiki E, Azzam M, Geroulakos G (2015) Pneumatic thigh compression reduces calf volume and augments the venous return. Phlebology 30(5):316–322

    Article  PubMed  Google Scholar 

  65. Lawall H, Huppert H, Rümenapf G (2017) S3 Leitlinie „Diagnostik, Therapie und Nachsorge der pAVK“; AWMF-RegisterNr. 065-003

  66. Manfredini F, Malagoni AM, Felisatti M, Mandini S, Lamberti N, Manfredini R, Mascoli F, Basaglia N, Zamboni P (2014) Acute oxygenation changes on ischemic foot of a novel intermittent pneumatic compression device and of an existing sequential device in severe peripheral arterial disease. BMC Cardiovasc Disord 31(14):40

    Article  Google Scholar 

  67. Marlborough F, Allouni A, Erdmann M (2014) An unusual referral with skin loss following intermittent pneumatic compression therapy. J Plast Reconstr Aesthet Surg 67(5):e136–e137

    Article  PubMed  Google Scholar 

  68. Mc Grory B, Burke DM (2000) Peroneal nerve palsy following intermittent sequential pneumatic compression. Orthopedics 23:1103–1105

    CAS  Google Scholar 

  69. McCulloch JM, Marler KC, Neal MB, Phifer TJ (1994) Intermittent pneumatic compression improves venous ulcer healing. Adv Wound Care 7(4):22–26

    PubMed  CAS  Google Scholar 

  70. McIlhone S, Ukra H, Karim A, Vratchovski V (2012) Soft tissue injury to the sole of the foot secondary to a retained AV impulse foot pump. Foot Ankle Surg 18(3):216–217

    Article  PubMed  Google Scholar 

  71. Miranda F Jr, Perez MC, Castiglioni ML et al (2001) Effect of sequential intermittent, pneumatic compression on both leg lymphe-dema volume and on lymph transport as semi-quantitatively evaluated by lymphoscintigraphy. Lymphology 34:135–141

    PubMed  Google Scholar 

  72. Mokhtar S, Azizi ZA, Govindarajanthran N (2008) Prospective study to determine the effect of intermittent pneumatic foot and calf compression on popliteal artery peak systolic blood flow. Asian J Surg 31(3):124–129

    Article  PubMed  Google Scholar 

  73. Moran PS, Teljeur C, Harrington P, Ryan M (2015) A systematic review of intermittent pneumatic compression for critical limb ischaemia. Vasc Med 20(1):41–50

    Article  PubMed  Google Scholar 

  74. Mulder GD, Reis TM (1990) Venous ulcers: pathophysiology and medical therapy. Am Fam Physician 42:1323–1330

    PubMed  CAS  Google Scholar 

  75. Muluk SC, Hirsch AT, Taffe EC (2013) Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes. Eur J Vasc Endovasc Surg 46:480–487

    Article  PubMed  CAS  Google Scholar 

  76. Nelson EA, Hilmann A, Thomas K (2014) Intermittent pneumatic compression for treating venous leg ulcers. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001899.pub4

    Article  PubMed  Google Scholar 

  77. Nikolovska S, Arsovski A, Damevska K, Gocev G, Pavlova L (2005) Evaluation of two different intermittent pneumatic compression cycle settings in the healing of venous ulcers: a randomized trial. Med Sci Monit 11(7):CR337–CR343

    PubMed  Google Scholar 

  78. O’Donnell MJ, McRae S, Kahn SR, Jualian JA, Kearon C, Mackinnon B, Magier D, Strulovich C, Lyons T, Robinson S, Hirsh J, Ginsberg JS (2008) Evulation of a venos-return assist device to treat severe postthrombotic syndrome (VENOPTS). A randomized controlled trial. Thromb Haemost 99:623–629

    Article  PubMed  CAS  Google Scholar 

  79. Olszewski WL, Cwikla J, Zaleska M, Domaszewska-Szostek A, Gradalski T, Szopinska S (2011) Pathways of lymph and tissue fluidflow during intermittent pneumatic massage of lower limbs with obstructive lymphedema. Lymphology 44:54–64

    PubMed  CAS  Google Scholar 

  80. Olszewski WL, Jain P, Ambujam G, Zaleska M, Cakala M, Gradalski T (2011) Tissue fluid pressure and flow during pneumatic compression in lymphedema of lower limbs. Lymphat Res Biol 9:2

    Article  Google Scholar 

  81. Öztürk Ç, te Slaa A, Dolmans DE, Ho GH, de Vries J, Mulder PG, van der Laan L (2012) Quality of life in perspective to treatment of postoperative edema after peripheral bypass surgery. Ann Vasc Surg 26(3):373–382

    Article  PubMed  Google Scholar 

  82. Park SH, Silva M (2003) Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg Am 85-A(8):1446–1453

    Article  PubMed  Google Scholar 

  83. Parra RO (1987) Pressure necrosis form intermittent pneumatic-compression stockings. N Engl J Med 321:1615

    Google Scholar 

  84. Partsch H, Mostbeck A, Leitner G (1980) Experimentelle untersuchungen zur Wirkung einer Druckwellenmasage (Lymphapress) beim Lymphödem. Phlebol Proktol 9:124–128

    Google Scholar 

  85. Partsch H (2008) Intermittent pneumatic compression in immobile patients. Int Wound J 5(3):389–397

    Article  PubMed  Google Scholar 

  86. Patterson RB, Cardullo P (2013) Superior hemodynamic performance of a thigh-length versus knee-length intermittent pneumatic compression device. J Vasc Surg Venous Lymphat Disord 1(3):276–279

    Article  PubMed  Google Scholar 

  87. Pawlaczyk K, Gabriel M, Urbanek T, Dzieciuchowicz Ł, Krasiński Z, Gabriel Z, Olejniczak-Nowakowska M, Stanisić M (2015) Effects of intermittent pneumatic compression on reduction of postoperative lower extremity edema and normalization of foot microcirculation flow in patients undergoing arterial revascularization. Med Sci Monit 21:3986–3992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Pekanmaki K, Kolari PJ, Kiistala U (1987) Intermittent pneumatic compression treatment for post-thrombotic leg ulcers. Clin Exp Dermatol 12:350–353

    Article  PubMed  CAS  Google Scholar 

  89. Phillips JJ, Gordon SJ (2014) Conservative management of lymphedema in children: a systematic review. J Pediatr Rehabil Med 7:361–372

    PubMed  Google Scholar 

  90. Pilch U, Wozniewski M, Szuba A (2009) Influece of compression cycle time and number of sleeve chambers on upper extremity, lymphedema volume reduction during intermittent pneumatic compression. Lymphology 42:26–35

    PubMed  CAS  Google Scholar 

  91. Pittmann GR (1989) Peroneal nerve palsy following sequential pneumatic compression. JAMA 261:2201–2202

    Article  Google Scholar 

  92. Pohjola RT, Pekanmäki K, Kolari PJ (1995) Intermittent pneumatic compression of lymphoedema. Eur J Lymphol 5:87–90

    Google Scholar 

  93. Rabe E et al (2003) Apparative intermittierende Kompressionstherapie. Viavital, Köln

    Google Scholar 

  94. Ramaswami G, D’Ayala M, Hollier LH, Deutsch R, McElhinney AJ (2005) Rapid foot and calf compression increases walking distance in patients with intermittent claudication: results of a randomized study. J Vasc Surg 41(5):794–801

    Article  PubMed  Google Scholar 

  95. Riccioni C, Sarcinella R, Palermo G, Izzo A, Liguori M, Koverech A, Messano M, Virmani A (2008) Evaluation of the efficacy of propionyl-L-carnitine versus pulsed muscular compressions in diabetic and non-diabetic patients affected by obliterating arteriopathy Leriche stage II. Int Angiol 27(3):253–259

    PubMed  CAS  Google Scholar 

  96. Ridner S, Murphy B, Deng J et al (2010) Advanced pneumatic therapy in self-care of chronic lymphedema of the trunk. Lymphat Res Biol 8:209

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rithalia SVS, Heath GH, Gonsalkorale M (2002) Evaluation of intermittent pneumatic compression systems. J Tissue Viability 12:52–57

    Article  PubMed  Google Scholar 

  98. Rogan S, Taeymans J, Luginbuehl H, Aebi M, Mahnig S, Gebruers N (2016) Therapy modalities to reduce lymphoedema in female breast, cancer patients: a systematic review and meta-analysis. Breast Cancer Res Treat 159:1–14

    Article  PubMed  CAS  Google Scholar 

  99. Roper TA, Redford S, Tallis RC (1999) Intermittent compression for the treatment of the oedematous hand in hemiplegic stroke: a randomized controlled trial. Age Ageing 28:9–13

    Article  PubMed  CAS  Google Scholar 

  100. Rowland J (2000) Intermittent pump versus compression bandages in the treatment of venous leg ulcers. Aust N Z J Surg 70:110–113

    Article  PubMed  CAS  Google Scholar 

  101. Schizas N, Li J, Andersson T, Fahlgren A, Aspenberg P, Ahmed M, Ackermann PW (2010) Compression therapy promotes proliferative repair during rat Achilles tendon immobilization. J Orthop Res 28(7):852–858

    PubMed  Google Scholar 

  102. Schuler JJ, Maibenco T, Megerman J et al (1996) Treatment of chronic venous ulcers using sequential gradient intermittent pneumatic compression. Phlebology 111(11):6

    Google Scholar 

  103. Shao Y, Qi K, Zhou Q‑H, Zhong D‑S (2014) Intermittent pneumatic compression pump for breast cancer-related Lymphedema: a systematic review and meta-analysis of randomized controlled trials. Oncol Res Treat 37:170–174

    Article  PubMed  Google Scholar 

  104. Shimizu Y, Kamada H, Sakane M, Aikawa S, Mutsuzaki H, Tanaka K, Mishima H, Ochiai N, Yamazaki M (2016) A novel apparatus for active leg exercise improves venous flow in the lower extremity. J Sports Med Phys Fitness 56(12):1592–1597

    PubMed  Google Scholar 

  105. Siddiqui AU, Buchman TG, Hotchkiss RS (2000) Pulmonary embolism as an consequence of applying sequential compression device on legs in a patient asymptomatic of deep vein thrombosis. Anesthesiology 92:880–882

    Article  PubMed  CAS  Google Scholar 

  106. te Slaa A, Dolmans DE, Ho GH, Mulder PG, van der Waal JC, de Groot HG, van der Laan L (2010) Evaluation of A‑V impulse technology as a treatment for oedema following polytetrafluoroethylene femoropopliteal surgery in a randomized controlled trial. Eur J Vasc Endovasc Surg 40(5):635–642

    Article  Google Scholar 

  107. Sultan S, Esan O, Fahy A (2008) Nonoperative active management of critical limb ischemia: initial experience using a sequential compression biomechanical device for limb salvage. Vascular 16(3):130–139

    Article  PubMed  Google Scholar 

  108. Sultan S, Hamada N, Soylu E, Fahy A, Hynes N, Tawfick W (2011) Sequential compression biomechanical device in patients with critical limb ischemia and nonreconstructible peripheral vascular disease. Vasc Surg 54(2):440–446 (discussion 446–7)

    Article  Google Scholar 

  109. Sutkowska E, Wozniewski M, Gamian A, Gosk-Bierska I, Alexewicz P, Sutkowski K, Wysokinski WE (2009) Intermittent pneumatic compression in stable claudicants: effect on hemostasis and endothelial function. Int Angiol 28(5):373–379

    PubMed  CAS  Google Scholar 

  110. Svensson BH, Frellsen MB, Basse PN, Bliddal H, Caspers J, Parby K (1993) Effect of pneumatic compression in connection with ergotherapeutic treatment of Colles’ fracture. A clinical controlled trial. Ugeskr Laeg 155(7):463–466

    PubMed  CAS  Google Scholar 

  111. Szolnoky G, Borsos B, Bársony K, Balogh M, Kemény L (2008) Complete decongestive, physiotherapy with and without pneumatic compression for treatment of lipedema: a pilot study. Lymphology 41:40–44

    PubMed  CAS  Google Scholar 

  112. Szolnoky G, Nagy N, Kovács RK, Dósa-Rácz E, Szabó A, Bársony K, Balogh M, Kemény L (2008) Complex decongestive physiotherapy decreases capillary fragility in lipedema. Lymphology 41:161–166

    PubMed  CAS  Google Scholar 

  113. Szuba A, Achalu R, Rockson SG (2002) Decongestive lymphatic therapy for patients with breast carcinoma-associated lymphedema. A randomized, prospective study of a role for adjunctive intermittent pneumatic compression. Cancer 95:2260–2267

    Article  PubMed  Google Scholar 

  114. Tamir L, Hendel D, Neyman C et al (1999) Sequential foot compression reduces low limb swelling and pain after total knee arthroplasty. J Arthroplast 14:333–338

    Article  CAS  Google Scholar 

  115. Taradaj J, Rosińczuk J, Dymarek R, Halski T, Schneider W (2015) Comparison of efficacy of the intermittent pneumatic compression with a high- and low-pressure application in reducing the lower limbs phlebolymphedema. Ther Clin Risk Manag 11:1545–1554

    PubMed  PubMed Central  Google Scholar 

  116. Tawfick WA, Hamada N, Soylu E, Fahy A, Hynes N, Sultan S (2013) Sequential compression biomechanical device versus primary amputation in patients with critical limb ischemia. Vasc Endovascular Surg 47(7):532–539

    Article  PubMed  Google Scholar 

  117. Thordarson DB, Ghalambor N, Perlman M (1997) Intermittent pneumatic pedal compression and edema resolution after acute ankle fracture: a randomized study. Foot Ankle Int 18:347–350

    Article  PubMed  CAS  Google Scholar 

  118. Thordarson DB, Greene N, Shepherd L et al (1999) Facilitating edema resolution with a foot pump after calcaneus fracture. J Orthop Trauma 13:43–46

    Article  PubMed  CAS  Google Scholar 

  119. Uzkeser H, Karatay S, Erdemci B, Koc M, Senel K (2015) Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: a randomized controlled trial. Breast Cancer 22:300–307

    Article  PubMed  Google Scholar 

  120. Vanscheidt W, Ukat A, Partsch H (2009) Dose-response of compression therapy for chronic venous edema—higher pressures are associated with greater volume reduction: two randomized clinical studies. J Vasc Surg 49(2):395–402, 402.e1

    Article  PubMed  Google Scholar 

  121. Werbel GB, Shybut GT (1986) Acute compartment syndrome caused by a malfunctioning pneumatic-compression boot. J Bone Joint Surg 68:1445–1446

    Article  PubMed  CAS  Google Scholar 

  122. Williams KJ, Babber A, Ravikumar R, Davies AH (2017) Non-invasive management of peripheral arterial disease. Adv Exp Med Biol 906:387–406

    Article  PubMed  CAS  Google Scholar 

  123. Williams KJ, Moore HM, Davies AH (2015) Haemodynamic changes with the use of neuromuscular electrical stimulation compared to intermittent pneumatic compression. Phlebology 30(5):365–372

    Article  PubMed  CAS  Google Scholar 

  124. Won SH, Lee YK, Suh YS, Koo KH (2013) Extensive bullous complication associated with intermittent pneumatic compression. Yonsei Med J 54(3):801–802

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zaki M, Elsherif M, Tawfick W, El Sharkawy M, Hynes N, Sultan S (2016) The role of sequential pneumatic compression in limb salvage in non-reconstructable critical limb Ischemia. Eur J Vasc Endovasc Surg 51(4):565–571

    Article  PubMed  CAS  Google Scholar 

  126. Zaleska Marzanna, Olszewski WL, Durlik M (2014) The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limbs. Lymphat Res Biol 12(2):103–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Zaleska M, Olszewski ML, Cakala M, Cwikla J, Budlewski T (2015) Intermittent pneumatic compression enhances formation of edema tissue fluid channels in lymphedema of lower limbs. Lymphat Res Biol 13(2):146–153

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zaleska M, Olszewski WL, Jain P, Gogia S, Rekha A, Mishra S, Durlik M (2013) Pressures and timing of intermittent pneumatic compression devices for efficient tissue fluid and lymph flow in limbs with Lymphedema. Lymphat Res Biol 11(4):227–232

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schwahn-Schreiber.

Ethics declarations

Interessenkonflikt

C. Schwahn-Schreiber, F.X. Breu, E. Rabe, I. Buschmann, W. Döller, G.R. Lulay, A. Miller, E. Valesky und S. Reich-Schupke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Langversion und Methodenreport der S1-Leitlinie Intermittierende Pneumatische Kompression (IPK, AIK) mit der Registernummer 037-007, die hier in leicht adaptierter Form abgedruckt wird, finden Sie unter http://www.awmf.org/leitlinien/detail/ll/037-007.html.

Beteiligte medizinisch-wissenschaftliche Fachgesellschaften

Deutsche Gesellschaft für Phlebologie e. V. (DGP), Gesellschaft Deutschsprachiger Lymphologen (GDL), Deutsche Gesellschaft für Lymphologie (DGL), Deutsche Dermatologische Gesellschaft (DDG), Deutsche Gesellschaft für Angiologie – Gesellschaft für Gefäßmedizin e. V. (DGA), Deutsche Gesellschaft für Gefäßchirurgie und Gefäßmedizin – Gesellschaft für operative, endovaskuläre und präventive Gefäßmedizin e. V. (DGG)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwahn-Schreiber, C., Breu, F.X., Rabe, E. et al. S1-Leitlinie Intermittierende Pneumatische Kompression (IPK, AIK). Hautarzt 69, 662–673 (2018). https://doi.org/10.1007/s00105-018-4219-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-018-4219-1

Schlüsselwörter

Keywords

Navigation