Skip to main content
Log in

Spaces of Variable Smoothness and Integrability: Characterizations by Local Means and Ball Means of Differences

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study the spaces \(B^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb {R}^{n})\) and \(F^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^{n})\) of Besov and Triebel-Lizorkin type as introduced recently in Almeida and Hästö (J. Funct. Anal. 258(5):1628–2655, 2010) and Diening et al. (J. Funct. Anal. 256(6):1731–1768, 2009). Both scales cover many classical spaces with fixed exponents as well as function spaces of variable smoothness and function spaces of variable integrability.

The spaces \(B^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^{n})\) and \(F^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^{n})\) have been introduced in Almeida and Hästö (J. Funct. Anal. 258(5):1628–2655, 2010) and Diening et al. (J. Funct. Anal. 256(6):1731–1768, 2009) by Fourier analytical tools, as the decomposition of unity. Surprisingly, our main result states that these spaces also allow a characterization in the time-domain with the help of classical ball means of differences.

To that end, we first prove a local means characterization for \(B^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^{n})\) with the help of the so-called Peetre maximal functions. Our results do also hold for 2-microlocal function spaces \(B^{\boldsymbol{w}}_{{p(\cdot)},{q(\cdot)}}(\mathbb{R}^{n})\) and \(F^{\boldsymbol{w}}_{{p(\cdot)},{q(\cdot)}}(\mathbb{R}^{n})\) which are a slight generalization of generalized smoothness spaces and spaces of variable smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5), 1628–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, A., Samko, S.: Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Funct. Spaces Appl. 4(2), 113–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, A., Samko, S.: Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwend. 26(2), 179–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almeida, A., Samko, S.: Embeddings of variable Hajłasz-Sobolev spaces into Hölder spaces of variable order. J. Math. Anal. Appl. 353(2), 489–496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersson, P.: Two-microlocal spaces, local norms and weighted spaces. Paper 2 in PhD Thesis, pp. 35–58 (1997)

  6. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. (Tokyo) 18, 588–594 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beauzamy, B.: Espaces de Sobolev et de Besov d’ordre variable définis sur L p. C. R. Math. Acad. Sci. Paris 274, 1935–1938 (1972)

    MathSciNet  MATH  Google Scholar 

  8. Besov, O.V.: Equivalent normings of spaces of functions of variable smoothness. Proc. Steklov Inst. Math. 243(4), 80–88 (2003)

    MathSciNet  Google Scholar 

  9. Bony, J.-M.: Second microlocalization and propagation of singularities for semi-linear hyperbolic equations. In: Taniguchi Symp. HERT, Katata, pp. 11–49 (1984)

    Google Scholar 

  10. Cobos, F., Fernandez, D.L.: Hardy-Sobolev spaces and Besov spaces with a function parameter. In: Proc. Lund Conf. 1986. Lect. Notes Math., vol. 1302, pp. 158–170. Springer, Berlin (1986)

    Google Scholar 

  11. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable L p spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 28, 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators in variable L p-spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 31, 239–264 (2006)

    Google Scholar 

  13. Diening, L.: private communication

  14. Diening, L.: Maximal function on generalized Lebesgue spaces L p(⋅). Math. Inequal. Appl. 7(2), 245–254 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 34(2), 503–522 (2009)

    MATH  Google Scholar 

  16. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer Berlin (2011)

    Book  MATH  Google Scholar 

  18. Drihem, D.: Atomic decomposition of Besov spaces with variable smoothness and integrability. J. Math. Anal. Appl. 389, 15–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farkas, W., Leopold, H.-G.: Characterisations of function spaces of generalised smoothness. Ann. Mat. Pura Appl. 185(1), 1–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldman, M.L.: A description of the traces of some function spaces. Tr. Mat. Inst. Steklova 150, 99–127 (1979). English transl.: Proc. Steklov Inst. Math. 150(4) (1981)

    Google Scholar 

  21. Goldman, M.L.: A method of coverings for describing general spaces of Besov type. Tr. Mat. Inst. Steklova 156, 47–81 (1980). English transl.: Proc. Steklov Inst. Math. 156(2) (1983)

    Google Scholar 

  22. Goldman, M.L.: Imbedding theorems for anisotropic Nikol’skij-Besov spaces with moduli of continuity of general type. Tr. Mat. Inst. Steklova 170, 86–104 (1984). English transl.: Proc. Steklov Inst. Math. 170(1) (1987)

    Google Scholar 

  23. Gurka, P., Harjulehto, P., Nekvinda, A.: Bessel potential spaces with variable exponent. Math. Inequal. Appl. 10(3), 661–676 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Jaffard, S.: Pointwise smoothness, two-microlocalisation and wavelet coefficients. Publ. Math. 35, 155–168 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Jaffard, S., Meyer, Y.: Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions. Memoirs of the AMS, vol. 123 (1996)

    Google Scholar 

  26. Kalyabin, G.A.: Characterization of spaces of generalized Liouville differentiation. Mat. Sb. Nov. Ser. 104, 42–48 (1977)

    Google Scholar 

  27. Kalyabin, G.A.: Description of functions in classes of Besov-Lizorkin-Triebel type. Tr. Mat. Inst. Steklova 156, 82–109 (1980). English transl.: Proc. Steklov Institut Math. 156(2) (1983)

    MathSciNet  MATH  Google Scholar 

  28. Kalyabin, G.A.: Characterization of spaces of Besov-Lizorkin and Triebel type by means of generalized differences. Tr. Mat. Inst. Steklova 181, 95–116 (1988). English transl.: Proc. Steklov Inst. Math. 181(4) (1989)

    MathSciNet  Google Scholar 

  29. Kalyabin, G.A., Lizorkin, P.I.: Spaces of functions of generalized smoothness. Math. Nachr. 133, 7–32 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kempka, H.: 2-microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev. Mat. Complut. 22(1), 227–251 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Kempka, H., Vybíral, J.: A note on the spaces of variable integrability and summability of Almeida and Hästö. Proc. Am. Math. Soc. (to appear)

  32. Kováčik, O., Rákosník, J.: On spaces L p(x) and W 1,p(x). Czechoslov. Math. J. 41(4), 592–618 (1991)

    Google Scholar 

  33. Leopold, H.-G.: On function spaces of variable order of differentiation. Forum Math. 3, 1–21 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lévy Véhel, J., Seuret, S.: A time domain characterization of 2-microlocal spaces. J. Fourier Anal. Appl. 9(5), 473–495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lévy Véhel, J., Seuret, S.: The 2-microlocal formalism. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proceedings of Symposia in Pure Mathematics, PSPUM, vol. 72, pp. 153–215 (2004). Part 2

    Google Scholar 

  36. Merucci, C.: Applications of interpolation with a function parameter to Lorentz Sobolev and Besov spaces. In: Proc. Lund Conf., 1983. Lect. Notes Math., vol. 1070, pp. 183–201. Springer, Berlin (1983)

    Google Scholar 

  37. Meyer, Y.: Wavelets, Vibrations and Scalings. CRM Monograph Series, vol. 9. AMS, Providence (1998)

    MATH  Google Scholar 

  38. Moritoh, S., Yamada, T.: Two-microlocal Besov spaces and wavelets. Rev. Mat. Iberoam. 20, 277–283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Moura, S.: Function spaces of generalised smoothness. Diss. Math. 398, 1–87 (2001)

    MathSciNet  Google Scholar 

  40. Nekvinda, A.: Hardy-Littlewood maximal operator on L p(x)(ℝn). Math. Inequal. Appl. 7(2), 255–266 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–212 (1931)

    Google Scholar 

  42. Peetre, J.: On spaces of Triebel-Lizorkin type. Ark. Math. 13, 123–130 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 5, 471–473 (1957)

    MathSciNet  MATH  Google Scholar 

  44. Ross, B., Samko, S.: Fractional integration operator of variable order in the spaces H λ. Int. J. Math. Sci. 18(4), 777–788 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

    MATH  Google Scholar 

  46. Rychkov, V.S.: On a theorem of Bui, Paluszynski and Taibleson. Proc. Steklov Inst. Math. 227, 280–292 (1999)

    MathSciNet  Google Scholar 

  47. Scharf, B.: Atomare Charakterisierungen vektorwertiger Funktionenräume. Diploma Thesis, Jena (2009)

  48. Schneider, J.: Function spaces of varying smoothness I. Math. Nachr. 280(16), 1801–1826 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schneider, C.: On dilation operators in Besov spaces. Rev. Mat. Complut. 22(1), 111–128 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Schneider, C., Vybíral, J.: On dilation operators in Triebel-Lizorkin spaces. Funct. Approx. Comment. Math. 41, 139–162 (2009). Part 2

    Article  MathSciNet  MATH  Google Scholar 

  51. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  52. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  53. Ullrich, T.: Function spaces with dominating mixed smoothness, characterization by differences. Technical report, Jenaer Schriften zur Math. und Inform., Math/Inf/05/06 (2006)

  54. Ullrich, T.: Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl. (2012). doi:10.1115/2012/163213. Article ID 163213, 47 pages

    MathSciNet  Google Scholar 

  55. Ullrich, T., Rauhut, H.: Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type. J. Funct. Anal. 260(11), 3299–3362 (2011). doi:10.1016/j.jfa.2010.12.006

    Article  MathSciNet  MATH  Google Scholar 

  56. Unterberger, A., Bokobza, J.: Les opérateurs pseudodifférentiels d’ordre variable. C. R. Math. Acad. Sci. Paris 261, 2271–2273 (1965)

    MathSciNet  MATH  Google Scholar 

  57. Unterberger, A.: Sobolev spaces of variable order and problems of convexity for partial differential operators with constant coefficients. In: Astérisque 2 et 3, pp. 325–341. Soc. Math. France, Paris (1973)

    Google Scholar 

  58. Višik, M.I., Eskin, G.I.: Convolution equations of variable order (russ.). Tr. Mosk. Mat. Obsc. 16, 26–49 (1967)

    Google Scholar 

  59. Vybíral, J.: Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 34(2), 529–544 (2009)

    MATH  Google Scholar 

  60. Xu, H.: Généralisation de la théorie des chirps à divers cadres fonctionnels et application à leur analyse par ondelettes. Ph.D. thesis, Université Paris IX Dauphine (1996)

  61. Xu, J.-S.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 33(2), 511–522 (2008)

    MATH  Google Scholar 

  62. Xu, J.-S.: An atomic decomposition of variable Besov and Triebel-Lizorkin spaces. Armenian J. Math. 2(1), 1–12 (2009)

    Google Scholar 

  63. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support provided by the DFG project HA 2794/5-1 “Wavelets and function spaces on domains”. Furthermore, the first author thanks the RICAM for his hospitality and support during a short term visit in Linz.

The second author acknowledges the financial support provided by the FWF project Y 432-N15 START-Preis “Sparse Approximation and Optimization in High Dimensions”.

We thank the anonymous referee for pointing the reference [18] out to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Kempka.

Additional information

Communicated by Arieh Iserles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempka, H., Vybíral, J. Spaces of Variable Smoothness and Integrability: Characterizations by Local Means and Ball Means of Differences. J Fourier Anal Appl 18, 852–891 (2012). https://doi.org/10.1007/s00041-012-9224-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-012-9224-7

Keywords

Mathematics Subject Classification

Navigation