Skip to main content
Log in

Modular classes of skew algebroid relations

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E * which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e., mod(E) = 0. Further, the relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as the modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and of a Poisson map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bojowald, A. Kotov, T. Strobl, Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005), 400 − 426.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Caseiro, R. L. Fernandes, The modular class of a Poisson map, arXiv:1103.4305, 2011.

  3. С. А. Чаплыгин, Къ меорiи движенiя неголономных системъ. Теорема о npuвoдящемъ множumеля, Мат. сб. 28 (1912), no. 2, 303 − 314. [S. A. Chaplygin, On the theory of the motion of nonholonomic systems. Theorem on the reducing multiplier, Math. Sbornik 28 (1911), 303 − 314 (in Russian)].

  4. T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631 − 661.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. J. Courant, A. Weinstein, Beyond Poisson structures, in: Seminaire Sud-Rhodanien de Geometrie VIII. Travaux en Cours, Vol. 27, Hermann, Paris, 1988, pp. 39−49.

    Google Scholar 

  6. M. Crainic, R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. 157 (2003), 575 − 620.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Crainic, R. L. Fernandes, Integrability of Poisson brackets, J. Diff. Geom. 66 (2004), 71 − 137.

    MathSciNet  MATH  Google Scholar 

  8. S. Evens, J.-H. Lu, A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., Oxford Ser. (2) 50 (1999), 417 − 436.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Fedorov, L. García-Naranjo, J. C. Marrero, Hamiltonian dynamics on skew-symmetric algebroids, unimodularity and preservation of volumes in nonholonomic mechanics, preprint, 2011.

  10. R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002) 119 − 179.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. L. Ginzburg, A. Golubev, Holonomy on Poisson manifolds and the modular class, Israel J. Math. 122 (2001), 221 − 242.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Grabowska, J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor. 41 (2008), 175204 (25 pp.).

    Article  MathSciNet  Google Scholar 

  13. K. Grabowska, J. Grabowski, Dirac Algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys. 61 (2011), 2233 − 2253.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Grabowska, J. Grabowski, P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys. 3 (2006), 559 − 575.

    Article  Google Scholar 

  15. J. Grabowski, M. Jóźwikowski, Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optim. 49 (2011), 1306 − 1357.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Grabowski, M. de Leon, J.C. Marrero, D. Martin de Diego, Nonholonomic constraints: a new viewpoint, J. Math. Phys. 50 (2009), 013520 (17 pp.).

    Article  MathSciNet  Google Scholar 

  17. J. Grabowski, G. Marmo, P. W. Michor, Homology and modular classes of Lie algebroids, Ann. Inst. Fourier 56 (2006), 69 − 83.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Grabowski, P. Urbański, Tangent lifts of Poisson and related structures, J. Phys. A: Math. Gen. 28 (1995), 6743 − 6777.

    Article  MATH  Google Scholar 

  19. J. Grabowski, P. Urbański, Lie algebroids and Poisson − Nijenhuis structures, Rep. Math. Phys. 40 (1997), 195 − 208.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Grabowski, P. Urbański, Algebroidsgeneral differential calculi on vector bundles, J. Geom. Phys. 31 (1999), 111 − 1141.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Hernández Ruipérez, J. Muñoz Masqué, Construction intrinsèque du faisceau de Berezin d'une variété gradué, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 915 − 918.

    MATH  Google Scholar 

  22. D. Hernández Ruipérez, J. Muñoz Masqué, Variational berezinian problems and their relationship with graded variational problems, in: Differential Geometric Methods in Mathematical Physics (Salamanca 1985), Lecture Notes in Mathematics, Vol. 1251, Springer, Berin, 1987, pp. 137 − 149.

    Chapter  Google Scholar 

  23. J. Huebschmann, Duality for Lie − Rinehart algebras and the modular class, J. Reine Angew. Math. 510 (1999), 103 − 159.

    MathSciNet  MATH  Google Scholar 

  24. M. Kontsevich, Course on Deformation Theory, University of California, Berkeley, 1994, preprint.

  25. Y. Kosmann-Schwarzbach, Modular vector fields and Batalin − Vilkovisky algebras, in: Poisson Geometry, J. Grabowski, P. Urbanski, eds., Banach Center Publ. 51 (2000), 109 − 129.

  26. Y. Kosmann-Schwarzbach, Dirac pairs, arXiv:1104.1378, 2011.

  27. Y. Kosmann-Schwarzbach, K. C. H. Mackenzie, Differential operators and actions of Lie algebroids, in: Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., Vol. 315, Amererican Mathwematical Society, Providence, RI, 2002, pp. 213−233.

    Chapter  Google Scholar 

  28. Y. Kosmann-Schwarzbach, J. Monterde, Divergence operators and odd Poisson brackets, Ann. Inst. Fourier (Grenoble) 52 (2002), 419 − 456.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Kosmann-Schwarzbach, A. Weinstein, Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris 341 (2005), 509 − 514.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Kosmann-Schwarzbach, C. Laurent-Gengoux, A. Weinstein, Modular classes of Lie algebroid morphisms, Transform. Groups 13 (2008), 727 − 755.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. L. Koszul, Crochet de Schouten − Nijenhuis et cohomologie, Astérisque, hors serie (1985), 257 − 271.

  32. J. Kubarski, The Weil algebra and the secondary characteristic homomorphism of regular Lie algebroids, in: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Vol. 54, 2001, pp. 135 − 173.

  33. M. de León, J.C. Marrero, E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen. 38 (2005), R241 − R308.

    Article  MATH  Google Scholar 

  34. K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series, Vol. 124, Cambridge University Press, Cambridge, 1987.

    Book  MATH  Google Scholar 

  35. J. C. Marrero, Hamiltonian dynamics on Lie algebroids, unimodularity and preservation of volumes, J. Geom. Mech. 2 (2010), 243 − 263.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Monterde, J. Vallejo, Modular class of even symplectic manifolds, Theor. Math. Phys. 132 (2002), 934 − 941.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, PhD thesis, UC Berkeley, 1999, arXiv:math.DG/9910078.

  38. D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in: Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., Vol. 315, American Mathematical Society, Providence, RI, 2002, pp. 169−185.

    Chapter  Google Scholar 

  39. P. Ševera, Some title containing the words "homotopy" and "symplectic", e.g., this one, Travaux mathématiques, Univ. Luxemb. 16 (2005), 121−137.

    MathSciNet  Google Scholar 

  40. I. Vaisman, Characteristic classes of Lie algebroid morphisms, Diff. Geom. Appl. 28 (2010), 635 − 647.

    Article  MathSciNet  MATH  Google Scholar 

  41. А. Ю. Baйнtpoб, Aлгеброидоы Лu u гомологические векторные поля, УМH 52 (1997), no. 2(314), 161 − 162. Engl. transl.: A. Yu. Vaĭntrob, Lie algebroids and homological vector fields, Uspekhi Matem. Nauk 52 (1997), no. 2, 428 − 429.

  42. A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40(1988), 705 − 727.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Weinstein, Lagrangian mechanics and grupoids, Fields Inst. Comm. 7 (1996),207 − 231.

    Google Scholar 

  44. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom.Phys. 23 (1997), 379 − 394.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math.Phys. 200 (1999), 545 − 560.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Grabowski.

Additional information

Research supported by the Polish Ministry of Science and Higher Education under the grant N N201 416839.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabowski, J. Modular classes of skew algebroid relations. Transformation Groups 17, 989–1010 (2012). https://doi.org/10.1007/s00031-012-9197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9197-2

Keywords

Navigation