Skip to main content

Advertisement

Log in

Long non-coding RNA NEAT1-centric gene regulation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer’s disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirose T, Yamazaki T, Nakagawa S (2019) Molecular anatomy of the architectural NEAT1 noncoding RNA: the domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdiscip Rev RNA 10(6):e1545

    PubMed  Google Scholar 

  2. Zhang P, Cao L, Zhou R, Yang X, Wu M (2019) The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun 10(1):1495

    PubMed  PubMed Central  Google Scholar 

  3. Huang S, Dong D, Zhang Y, Chen Z, Geng J, Zhao Y (2019) NEAT1 regulates Th2 cell development by targeting STAT6 for degradation. Cell Cycle 18(3):312–319

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K et al (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53(3):393–406

    CAS  PubMed  Google Scholar 

  5. Wang Z, Fan P, Zhao Y, Zhang S, Lu J, Xie W et al (2017) NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription. Cell Mol Life Sci 74(6):1117–1131

    CAS  PubMed  Google Scholar 

  6. Ma H, Han P, Ye W, Chen H, Zheng X, Cheng L et al (2017) The long noncoding RNA NEAT1 exerts antihantaviral effects by acting as positive feedback for RIG-I signaling. J Virol 91(9):e02250–e2316

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Cheng C (2018) Long noncoding RNA NEAT1 promotes the metastasis of osteosarcoma via interaction with the G9a-DNMT1-Snail complex. Am J Cancer Res 8(1):81–90

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li W, Zhang Z, Liu X, Cheng X, Zhang Y, Han X et al (2017) The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J Clin Invest 127(9):3421–3440

    PubMed  PubMed Central  Google Scholar 

  9. Wang Z, Zhao Y, Xu N, Zhang S, Wang S, Mao Y et al (2019) NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell Mol Life Sci 76(15):3005–3018

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamazaki T, Hirose T (2015) The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed) 7:1–41

    Google Scholar 

  11. Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010) Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell 21(22):4020–4027

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF et al (2005) Regulating gene expression through RNA nuclear retention. Cell 123(2):249–263

    CAS  PubMed  Google Scholar 

  13. West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI et al (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooper DR, Carter G, Li P, Patel R, Watson JE, Patel NA (2014) Long non-coding RNA NEAT1 associates with SRp40 to temporally regulate PPARγ2 splicing during adipogenesis in 3T3-L1 Cells. Genes (Basel) 5(4):1050–1063

    Google Scholar 

  15. Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL (2003) The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 5(5):709–722

    CAS  PubMed  Google Scholar 

  16. Fang J, Qiao F, Tu J, Xu J, Ding F, Liu Y et al (2017) High expression of long non-coding RNA NEAT1 indicates poor prognosis of human cancer. Oncotarget 8(28):45918–45927

    PubMed  PubMed Central  Google Scholar 

  17. Yan W, Chen ZY, Chen JQ, Chen HM (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson's disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019–1024

    CAS  PubMed  Google Scholar 

  18. Liu Y, Lu Z (2018) Long non-coding RNA NEAT1 mediates the toxic of Parkinson's disease induced by MPTP/MPP+ via regulation of gene expression. Clin Exp Pharmacol Physiol 45(8):841–848

    CAS  PubMed  Google Scholar 

  19. Xie SP, Zhou F, Li J, Duan SJ (2019) NEAT1 regulates MPP+-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci Lett 708:134340

    CAS  PubMed  Google Scholar 

  20. Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER et al (2019) NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 33(10):11223–11234

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Li K, Chen W, Wang X, Huang Y, Wang W et al (2019) Modulation of SRSF2 expression reverses the exhaustion of TILs via the epigenetic regulation of immune checkpoint molecules. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03362-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Zhang Q, Wang Q, Shen Q, Chen X, Li Z et al (2018) NEAT1 paraspeckle promotes human hepatocellular carcinoma progression by strengthening IL-6/STAT3 signaling. Oncoimmunology 7(11):e1503913

    PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J et al (2018) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res 24(3):684–695

    CAS  PubMed  Google Scholar 

  24. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P et al (2016) p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 22(8):861–868

    CAS  PubMed  Google Scholar 

  25. Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T et al (2015) p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 29(10):2015–2023

    CAS  PubMed  Google Scholar 

  26. Idogawa M, Ohashi T, Sasaki Y, Nakase H, Tokino T (2017) Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function. Int J Cancer 140(12):2785–2791

    CAS  PubMed  Google Scholar 

  27. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al (1994) Science 266:66–71

    CAS  PubMed  Google Scholar 

  28. Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25:5854–5863

    CAS  PubMed  Google Scholar 

  29. Lo PK, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N et al (2016) Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget 7(40):65067–65089

    PubMed  PubMed Central  Google Scholar 

  30. Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S et al (2005) BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. Cancer Res 65(22):10265–10272

    CAS  PubMed  Google Scholar 

  31. Zeng C, Liu S, Lu S, Yu X, Lai J, Wu Y et al (2004) The c-Myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Mol Cancer 17(1):130

    Google Scholar 

  32. Frolov MV, Dyson NJ (2004) Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117(Pt 11):2173–2181

    CAS  PubMed  Google Scholar 

  33. Zhang M, Zheng Y, Sun Y, Li S, Chen L, Jin X et al (2019) Knockdown of NEAT1 induces tolerogenic phenotype in dendritic cells by inhibiting activation of NLRP3 inflammasome. Theranostics 9(12):3425–3442

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT et al (1999) Regulation of transcription by a protein methyltransferase. Science 284(5423):2174–2177

    CAS  PubMed  Google Scholar 

  35. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM et al (2001) A transcriptional switch mediated by cofactor methylation. Science 294(5551):2507–2511

    CAS  PubMed  Google Scholar 

  36. Hu SB, Xiang JF, Li X, Xu Y, Xue W, Huang M et al (2015) Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev 29(6):630–645

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Llères D, Denegri M, Biggiogera M, Ajuh P, Lamond AI (2010) Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep 11(6):445–451

    PubMed  PubMed Central  Google Scholar 

  38. Suzuki H, Shibagaki Y, Hattori S, Matsuoka M (2019) C9-ALS/FTD-linked proline-arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death Dis 10(10):746

    PubMed  PubMed Central  Google Scholar 

  39. DeMaria CT, Brewer G (1996) AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation. J Biol Chem 271(21):12179–12184

    CAS  PubMed  Google Scholar 

  40. Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58:266–277

    CAS  PubMed  Google Scholar 

  41. Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43(3):340–352

    CAS  PubMed  Google Scholar 

  42. Yoon JH, De S, Srikantan S, Abdelmohsen K, Grammatikakis I, Kim J et al (2014) PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 5:5248

    CAS  PubMed  Google Scholar 

  43. Chai Y, Liu J, Zhang Z, Liu L (2016) HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med 5(7):1588–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND et al (2005) ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120(1):59–72

    CAS  PubMed  Google Scholar 

  45. Zhou X, Li X, Yu L, Wang R, Hua D, Shi C et al (2019) The RNA-binding protein SRSF1 is a key cell cycle regulator via stabilizing NEAT1 in glioma. Int J Biochem Cell Biol 113:75–86

    CAS  PubMed  Google Scholar 

  46. Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP et al (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yong W, Yu D, Jun Z, Yachen D, Weiwei W, Midie X et al (2018) Long noncoding RNA NEAT1, regulated by LIN28B, promotes cell proliferation and migration through sponging miR-506 in high-grade serous ovarian cancer. Cell Death Dis 9(9):861

    PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Li K, Wang X, Huang W (2019) MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics 14(5):494–503

    PubMed  PubMed Central  Google Scholar 

  49. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S et al (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 103(46):17337–17342

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gernapudi R, Wolfson B, Zhang Y, Yao Y, Yang P, Asahara H et al (2015) MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol 36(1):30–38

    PubMed  PubMed Central  Google Scholar 

  51. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19(3):347–359

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA (2012) A triple helix stabilizes the 3' ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26(21):2392–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31(20):4020–4034

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13(1):95–101

    CAS  PubMed  Google Scholar 

  55. West JA, Mito M, Kurosaka S, Takumi T, Tanegashima C, Chujo T et al (2016) Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol 214(7):817–830

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    CAS  PubMed  Google Scholar 

  57. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14(4):452–458

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Modic M, Grosch M, Rot G, Schirge S, Lepko T, Yamazaki T et al (2019) Cross-regulation between TDP-43 and paraspeckles promotes pluripotency-differentiation transition. Mol Cell 74(5):951–965.e13

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Robinson F, Jackson RJ, Smith CW (2008) Expression of human nPTB is limited by extreme suboptimal codon content. PLoS ONE 3(3):e1801

    PubMed  PubMed Central  Google Scholar 

  60. Yang X, Qu S, Wang L, Zhang H, Yang Z, Wang J et al (2018) PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612. Oncogene 37(50):6399–6413

    CAS  PubMed  Google Scholar 

  61. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu X, Zhu J, Zhang L, Shu J (2019) Long non-coding RNA NEAT1 promotes steatosis via enhancement of estrogen receptor alpha-mediated AQP7 expression in HepG2 cells. Artif Cells Nanomed Biotechnol 47(1):1782–1787

    CAS  PubMed  Google Scholar 

  63. Li X, Wang X, Song W, Xu H, Huang R, Wang Y et al (2018) Oncogenic properties of NEAT1 in prostate cancer cells depend on the CDC5L-AGRN transcriptional regulation circuit. Cancer Res 78(15):4138–4149

    CAS  PubMed  Google Scholar 

  64. Cao R, Zhang Y (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14(2):155–164

    CAS  PubMed  Google Scholar 

  65. Zhang C, Li JY, Tian FZ, Zhao G, Hu H, Ma YF et al (2018) Long noncoding RNA NEAT1 promotes growth and metastasis of cholangiocarcinoma cells. Oncol Res 26(6):879–888

    PubMed  PubMed Central  Google Scholar 

  66. Wang S, Zuo H, Jin J, Lv W, Xu Z, Fan Y et al (2019) Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2. Cell Death Dis 10(7):505

    PubMed  PubMed Central  Google Scholar 

  67. Zhao JL, Liang SQ, Fu W, Zhu BK, Li SZ, Han H et al (2014) The LIM domain protein FHL1C interacts with tight junction protein ZO-1 contributing to the epithelial-mesenchymal transition (EMT) of a breast adenocarcinoma cell line. Gene 542(2):182–189

    CAS  PubMed  Google Scholar 

  68. Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S et al (2010) Higher levels of GATA3 predict better survival in women with breast cancer. Hum Pathol 41(12):1794–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35(6):577–593

    CAS  PubMed  Google Scholar 

  70. Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F et al (2018) Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci USA 115(37):E8660–E8667

    PubMed  PubMed Central  Google Scholar 

  71. Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H et al (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25(1):169–183

    PubMed  PubMed Central  Google Scholar 

  72. Matthys VS, Cimica V, Dalrymple NA, Glennon NB, Bianco C, Mackow ER (2014) Hantavirus GnT elements mediate TRAF3 binding and inhibit RIG-I/TBK1-directed beta interferon transcription by blocking IRF3 phosphorylation. J Virol 88:2246–2259

    PubMed  PubMed Central  Google Scholar 

  73. Oshiumi H, Miyashita M, Okamoto M, Morioka Y, Okabe M, Matsumoto M et al (2015) DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation. Cell Rep 11:1193–1207

    CAS  PubMed  Google Scholar 

  74. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    CAS  PubMed  Google Scholar 

  75. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    CAS  PubMed  Google Scholar 

  76. Jiang L, Shao C, Wu QJ, Chen G, Zhou J, Yang B et al (2017) NEAT1 scaffolds RNA-binding proteins and the microprocessor to globally enhance pri-miRNA processing. Nat Struct Mol Biol 24(10):816–824

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C et al (2011) Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 71(4):1418–1430

    CAS  PubMed  Google Scholar 

  78. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN et al (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 3:311–318

    Google Scholar 

  79. Shen W, Liang XH, Sun H, De Hoyos CL, Crooke ST (2017) Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. PLoS ONE 12(3):e0173494

    PubMed  PubMed Central  Google Scholar 

  80. Shui X, Chen S, Lin J, Kong J, Zhou C, Wu J (2019) Knockdown of lncRNA NEAT1 inhibits Th17/CD4+ T cell differentiation through reducing the STAT3 protein level. J Cell Physiol 234(12):22477–22484

    CAS  PubMed  Google Scholar 

  81. Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan C et al (2018) The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol 11(1):113

    PubMed  PubMed Central  Google Scholar 

  82. Barutcu AR, Hong D, Lajoie BR, McCord RP, van Wijnen AJ, Lian JB (2016) RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochim Biophys Acta 1859 11:1389–1397

    Google Scholar 

  83. Jen J, Tang YA, Lu YH, Lin CC, Lai WW, Wang YC (2017) Oct4 transcriptionally regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Mol Cancer 16(1):104

    PubMed  PubMed Central  Google Scholar 

  84. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S et al (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5:5383

    CAS  PubMed  Google Scholar 

  85. Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L (2018) Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer 18(1):580

    PubMed  PubMed Central  Google Scholar 

  86. Han D, Zhou Y (2019) YY1-induced upregulation of lncRNA NEAT1 contributes to OGD/R injury-induced inflammatory response in cerebral microglial cells via Wnt/β-catenin signaling pathway. Vitro Cell Dev Biol Anim 55(7):501–511

    CAS  Google Scholar 

  87. Lellahi SM, Rosenlund IA, Hedberg A, Kiær LT, Mikkola I, Knutsen E et al (2018) The long noncoding RNA NEAT1 and nuclear paraspeckles are up-regulated by the transcription factor HSF1 in the heat shock response. J Biol Chem 293(49):18965–18976

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Fu L, Sun A, Tang D, Xu Y, Li Z et al (2018) C/EBPβ contributes to transcriptional activation of long non-coding RNA NEAT1 during APL cell differentiation. Biochem Biophys Res Commun 499(2):99–104

    CAS  PubMed  Google Scholar 

  89. Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J et al (2015) Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34(34):4482–4490

    CAS  PubMed  Google Scholar 

  90. Bunch H, Choe H, Kim J, Jo DS, Jeon S, Lee S et al (2019) P-TEFb regulates transcriptional activation in non-coding RNA genes. Front Genet 10:342

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA09006000), the China Postdoctoral Research Foundation (2018M633216), the National Natural Science Foundation of China (81772737), the National Science Foundation Projects of Guangdong Province (2017B030301015), the Shenzhen Municipal Government of China (JCYJ20170413161749433, JSGG20160301161836370), the Sanming Project of Shenzhen Health and Family Planning Commission (SZSM201412018, SZSM201512037), and the high level university’s medical discipline construction (2016031638).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqiang Wang or Weiren Huang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, K. & Huang, W. Long non-coding RNA NEAT1-centric gene regulation. Cell. Mol. Life Sci. 77, 3769–3779 (2020). https://doi.org/10.1007/s00018-020-03503-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03503-0

Keywords

Navigation