Skip to main content
Log in

Structure and function of α-glucan debranching enzymes

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12–14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase–pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a “missing link” between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAZy:

Carbohydrate-active enzymes

CBM:

Carbohydrate binding module

CD:

Cyclodextrin

CDD:

Conserved domain database

GDE:

Glycogen debranching enzyme

GH:

Glycoside hydrolase

GHx:

Glycoside hydrolase family x

GH13_x:

Glycoside hydrolase family 13 subfamily x

ISA:

Isoamylase

PULI:

Type I pullulanase

PULII:

Type II pullulanase

PULII_I:

Type II pullulanase with one catalytic domain

PULII_II:

Type II pullulanase with two catalytic domains

SBS:

Starch binding site

SEX4:

Starch-excess protein-4

References

  1. Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82(5):793–804

    Article  CAS  PubMed  Google Scholar 

  2. Vamadevan V, Bertoft E (2015) Structure-function relationships of starch components. Starch Stärke 67(1–2):55–68

    Article  CAS  Google Scholar 

  3. Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787

    Article  CAS  PubMed  Google Scholar 

  4. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495

    Article  CAS  PubMed  Google Scholar 

  5. Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19(12):555–562

    Article  CAS  PubMed  Google Scholar 

  6. MacGregor EA, Janeček S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta Protein Struct Mol Enzymol 1546(1):1–20

    Article  CAS  Google Scholar 

  7. Kuriki T, Imanaka T (1999) The concept of the α-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87(5):557–565

    Article  CAS  PubMed  Google Scholar 

  8. Janecek S, Svensson B, MacGregor EA (2014) α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71(7):1149–1170

    Article  CAS  PubMed  Google Scholar 

  9. Janecek S, Blesak K (2011) Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues. Protein J 30(6):429–435

    Article  CAS  PubMed  Google Scholar 

  10. Park K, Jung J, Park S, Lee M, Holden JF, Park C, Woo E (2014) Structural features underlying the selective cleavage of a novel exo-type maltose-forming amylase from Pyrococcus sp. ST04. Acta Crystallogr Sect D Biol Crystallogr 70(6):1659–1668

    Article  CAS  Google Scholar 

  11. Zona R, Chang-Pi-Hin F, O’Donohue M, Janecek S (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271(14):2863–2872

    Article  CAS  PubMed  Google Scholar 

  12. Kang S, Vieille C, Zeikus J (2005) Identification of Pyrococcus furiosus amylopullulanase catalytic residues. Appl Microbiol Biotechnol 66(4):408–413

    Article  CAS  PubMed  Google Scholar 

  13. Janeček S (2005) Amylolytic families of glycoside hydrolases: focus on the family GH-57. Biologia 60:177–184

    Google Scholar 

  14. Blesak K, Janecek S (2012) Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 16(3):497–506

    Article  CAS  PubMed  Google Scholar 

  15. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D1):D222–D226

    Article  PubMed  Google Scholar 

  16. Sim L, Beeren SR, Findinier J, Dauvillee D, Ball SG, Henriksen A, Palcic MM (2014) Crystal structure of the Chlamydomonas starch debranching enzyme isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly. J Biol Chem 289(33):22991–23003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hussain H, Mant A, Seale R, Zeeman S, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith A, Martin C, Bustos R (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15(1):133–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tetlow IJ (2011) Starch biosynthesis in developing seeds. Seed Sci Res 21(1):5–32

    Article  CAS  Google Scholar 

  19. Song H, Jung T, Park J, Park B, Myung PK, Boos W, Woo E, Park K (2010) Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins: Struct Funct Bioinf 78(8):1847–1855

    CAS  Google Scholar 

  20. Abe J, Ushijima C, Hizukuri S (1999) Expression of the isoamylase gene of Flavobacterium odoratum KU in Escherichia coli and identification of essential residues of the enzyme by site-directed mutagenesis. Appl Environ Microbiol 65(9):4163–4170

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291(3):177–181

    Article  CAS  PubMed  Google Scholar 

  22. Van TTK, Ryu S, Lee K, Kim E, Lee S (2007) Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J Microbiol Biotechn 17(5):792–799

    Google Scholar 

  23. Seibold GM, Eikmanns BJ (2007) The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiol SGM 153:2212–2220

    Article  CAS  Google Scholar 

  24. Krohn B, Barry G, Kishore G (1997) An isoamylase with neutral pH optimum from a Flavobacterium species: cloning, characterization and expression of the iam gene. Mol Gen Genet 254(5):469–478

    Article  CAS  PubMed  Google Scholar 

  25. Fujita N, Kubo A, Francisco P, Nakakita M, Harada K, Minaka N, Nakamura Y (1999) Purification, characterization, and cDNA structure of isoamylase from developing endosperm of rice. Planta 208(2):283–293

    Article  CAS  PubMed  Google Scholar 

  26. Hong S, Preiss J (2000) Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes. Arch Biochem Biophys 378(2):349–355

    Article  CAS  PubMed  Google Scholar 

  27. Ito H, Hamada S, Isono N, Yoshizaki T, Ueno H, Yoshimoto Y, Takeda Y, Matsui H (2004) Functional characteristics of C-terminal regions of starch-branching enzymes from developing seeds of kidney bean (Phaseolus vulgaris L.). Plant Sci 166(5):1149–1158

    Article  CAS  Google Scholar 

  28. Palomo M, Kralj S, van der Maarel MJEC, Dijkhuizen L (2009) The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Apple Environ Microbiol 75(5):1355–1362

    Article  CAS  Google Scholar 

  29. Katsuya Y, Mezaki Y, Kubota M, Matsuura Y (1998) Three-dimensional structure of Pseudomonas isoamylase at 2.2 angstrom resolution. J Mol Biol 281(5):885–897

    Article  CAS  PubMed  Google Scholar 

  30. Woo E, Lee S, Cha H, Park J, Yoon S, Song H, Park K (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem 283(42):28641–28648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cuyvers S, Dornez E, Delcour JA, Courtin CM (2012) Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Crit Rev Biotechnol 32(2):93–107

    Article  CAS  PubMed  Google Scholar 

  32. Min-ho L, Hyung-Nam S, Ji-Eun C, Lan TP, Sunghoon P, Jong-Tae P, Eui-Jeon W (2014) Association of bi-functional activity in the N-terminal domain of glycogen debranching enzyme. Biochem Biophys Res Commun 445(1):107–112

    Article  CAS  PubMed  Google Scholar 

  33. Liu W, Madsen N, Braun C, Withers S (1991) Reassessment of the catalytic mechanism of glycogen debranching enzyme. Biochemistry 30(5):1419–1424

    Article  CAS  PubMed  Google Scholar 

  34. Nakayama A, Yamamoto K, Tabata S (2001) Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J Biol Chem 276(31):28824–28828

    Article  CAS  PubMed  Google Scholar 

  35. Ara K, Igarashi K, Saeki K, Ito S (1995) An alkaline amylopullulanase from alkalophilic Bacillus sp KSM-1378; kinetic evidence for 2 independent active-sites for the α-1,4 and α-1,6 hydrolytic reactions. Biosci Biotechnol Biochem 59(4):662–666

    Article  CAS  Google Scholar 

  36. Møller MS, Windahl MS, Sim L, Bojstrup M, Abou Hachem M, Hindsgaul O, Palcic M, Svensson B, Henriksen A (2015) Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase. J Mol Biol 427(6):1263–1277

    Article  PubMed  CAS  Google Scholar 

  37. Nisha M, Satyanarayana T (2013) Recombinant bacterial amylopullulanases. Developments and perspectives. Bioengineered 4(6):388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim J, Sunako M, Ono H, Murooka Y, Fukusaki E, Yamashita M (2008) Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137. J Biosci Bioeng 106(5):449–459

    Article  CAS  PubMed  Google Scholar 

  39. Kim J, Sunako M, Ono H, Murooka Y, Fukusaki E, Yamashita M (2009) Characterization of the C-terminal truncated form of amylopullulanase from Lactobacillus plantarum L137. J Biosci Bioeng 107(2):124–129

    Article  CAS  PubMed  Google Scholar 

  40. Ferrando ML, Fuentes S, de Greeff A, Smith H, Wells JM (2010) ApuA, a multifunctional α-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus. Microbiology 156:2818–2828

    Article  CAS  PubMed  Google Scholar 

  41. Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1,4 and α-1,6 linkages in polysaccharides at different active sites. J Biol Chem 271(39):24075–24083

    Article  CAS  PubMed  Google Scholar 

  42. O’Connell Motherway M, Fitzgerald GF, Neirynck S, Ryan S, Steidler L, van Sinderen D (2008) Characterization of ApuB, an extracellular type II amylopullulanase from Bifidobacterium breve UCC2003. Appl Environ Microbiol 74(20):6271–6279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lee YS, Seo SH, Yoon SH, Kim SY, Hahn BS, Sim JS, Koo BS, Lee CM (2016) Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens. Int J Biol Macromol 82:514–522

    Article  CAS  PubMed  Google Scholar 

  44. Han T, Zeng F, Li Z, Liu L, Wei M, Guan Q, Liang X, Peng Z, Liu M, Qin J, Zhang S, Jia B (2013) Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1. Lett Appl Microbiol 57(4):336–343

    CAS  PubMed  Google Scholar 

  45. Guan Q, Guo X, Han T, Wei M, Jin M, Zeng F, Liu L, Li Z, Wang Y, Cheong G, Zhang S, Jia B (2013) Cloning, purification and biochemical characterisation of an organic solvent-, detergent-, and thermo-stable amylopullulanase from Thermococcus kodakarensis KOD1. Process Biochem 48(5–6):878–884

    Article  CAS  Google Scholar 

  46. Koivula T, Hemila H, Pakkanen R, Sibakov M, Palva I (1993) Cloning and sequencing of a gene encoding acidophilic amylase from Bacillus acidocaldarius. J Gen Microbiol 139:2399–2407

    Article  CAS  PubMed  Google Scholar 

  47. Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W, Yao B (2012) Identification of an acidic α-amylase from Alicyclobacillus sp A4 and assessment of its application in the starch industry. Food Chem 131(4):1473–1478

    Article  CAS  Google Scholar 

  48. Lee S, Morikawa M, Takagi M, Imanaka T (1994) Cloning of the aapT gene and characterization of its product, α-amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl Environ Microbiol 60(10):3764–3773

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferner-Ortner-Bleckmann J, Huber-Gries C, Pavkov T, Keller W, Mader C, Ilk N, Sleytr UB, Egelseer EM (2009) The high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 interacts with the cell wall components by virtue of three specific binding regions. Mol Microbiol 72(6):1448–1461

    Article  CAS  PubMed  Google Scholar 

  50. Chen J, Chen M, Chen L, Chu W (2001) Structure and expression of an amylopullulanase gene from Bacillus stearothermophilus TS-23. Biotechnol Appl Biochem 33:189–199

    Article  CAS  PubMed  Google Scholar 

  51. Nisha M, Satyanarayana T (2013) Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol 97(14):6279–6292

    Article  CAS  PubMed  Google Scholar 

  52. Nisha M, Satyanarayana T (2015) The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Microbiol Biotechnol 99(13):5461–5474

    Article  CAS  PubMed  Google Scholar 

  53. Mathupala S, Saha B, Zeikus J (1990) Substrate competition and specificity at the active site of amylopullulanase from Clostridium thermohydrosulfuricum. Biochem Biophys Res Commun 166(1):126–132

    Article  CAS  PubMed  Google Scholar 

  54. Mathupala S, Lowe S, Podkovyrov S, Zeikus J (1993) Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J Biol Chem 268(22):16332–16344

    CAS  PubMed  Google Scholar 

  55. Ramesh M, Podkovyrov S, Lowe S, Zeikus J (1994) Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli. Appl Environ Microbiol 60(1):94–101

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Melasniemi H (1988) Purification and some properties of the extracellular α-amylase-pullulanase produced by Clostridium thermohydrosulfuricum. Biochem J 250(3):813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spreinat A, Antranikian G (1992) Analysis of the amylolytic enzyme-system of Clostridium thermosulfurogenes EM1: purification and synergistic action of pullulanases and maltohexaose forming α-amylase. Starch-Stärke 44(8):305–312

    Article  CAS  Google Scholar 

  58. Matuschek M, Burchhardt G, Sahm K, Bahl H (1994) Pullulanase of Thermoanaerobacterium thermosulfurigenes EM1 (Clostridium thermosulfurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J Bacteriol 176(11):3295–3302

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kahar UM, Chan K, Salleh MM, Hii SM, Goh KM (2013) A high molecular-mass Anoxybacillus sp SK3-4 amylopullulanase: characterization and its relationship in carbohydrate utilization. Int J Mol Sci 14(6):11302–11318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Li X, Li D (2015) Preparation of linear maltodextrins using a hyperthermophilic amylopullulanase with cyclodextrin- and starch-hydrolysing activities. Carbohydr Polym 119:134–141

    Article  CAS  PubMed  Google Scholar 

  61. Siddiqui MA, Rehman HU, Rashid N (2014) Gene cloning and characterization of a type II pullulanase hydrolase from a hyperthermophilic archaeon, Pyrobaculum calidifontis. Pak J Zool 46(4):1077–1084

    CAS  Google Scholar 

  62. Dong G, Vieille C, Zeikus J (1997) Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63(9):3577–3584

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi K, Cha J (2015) Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639. Extremophiles 19(5):909–920

    Article  CAS  PubMed  Google Scholar 

  64. Li X, Li D, Park K (2013) An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. Appl Microbiol Biotechnol 97(12):5359–5369

    Article  CAS  PubMed  Google Scholar 

  65. Erra-Pujada M, Debeire P, Duchiron F, O’Donohue M (1999) The type II pullulanase of Thermococcus hydrothermalis: molecular characterization of the gene and expression of the catalytic domain. J Bacteriol 181(10):3284–3287

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown S, Kelly R (1993) Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol 59(8):2614–2621

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiao Y, Wang S, Lv M, Xu J, Fang Y, Liu S (2011) A GH57 family amylopullulanase from deep-sea Thermococcus siculi: expression of the gene and characterization of the recombinant enzyme. Curr Microbiol 62(1):222–228

    Article  CAS  PubMed  Google Scholar 

  68. Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim Biophys Acta Protein Struct Mol Enzymol 1478(2):165–185

    Article  CAS  Google Scholar 

  69. Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park C, Lee HS, Oh BH, Park KH (2002) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277(24):21891–21897

    Article  CAS  PubMed  Google Scholar 

  70. Kim T, Kim M, Kim B, Kim J, Cheong T, Kim J, Park K (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microbiol 65(4):1644–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim J, Cha S, Kim H, Kim T, Ha N, Oh S, Cho H, Cho M, Kim M, Lee H, Kim J, Choi K, Park K, Oh B (1999) Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J Biol Chem 274(37):26279–26286

    Article  CAS  PubMed  Google Scholar 

  72. Dumbrepatil AB, Choi J, Park JT, Kim M, Kim TJ, Woo E, Park KH (2010) Structural features of the Nostoc punctiforme debranching enzyme reveal the basis of its mechanism and substrate specificity. Proteins Struct Funct Bioinf 78(2):348–356

    Article  CAS  Google Scholar 

  73. Ohtaki A, Mizuno M, Yoshida H, Tonozuka T, Sakano Y, Kamitori S (2006) Structure of a complex of Thermoactinomyces vulgaris R-47 α-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Carbohydr Res 341(8):1041–1046

    Article  CAS  PubMed  Google Scholar 

  74. Cho H, Kim Y, Kim T, Lee H, Kim D, Kim J, Lee Y, Lee S, Park K (2000) Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim Biophys Acta 1478(2):333–340

    Article  CAS  PubMed  Google Scholar 

  75. Mehta D, Satyanarayana T (2013) Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans. PLoS One 8(9):1–13

    Article  CAS  Google Scholar 

  76. Ahmad N, Rashid N, Haider MS, Akram M, Akhtar M (2014) Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis. Appl Environ Microbiol 80(3):1108–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JN, Lo Leggio L, Svensson B, Abou Hachem M (2012) Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J Bacteriol 194(16):4249–4259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Makelainen H, Hasselwander O, Rautonen N, Ouwehand AC (2009) Panose, a new prebiotic candidate. Lett Appl Microbiol 49(6):666–672

    Article  CAS  PubMed  Google Scholar 

  79. Møller MS, Abou Hachem M, Svensson B, Henriksen A (2012) Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21. Acta Crystallogr F Struct Biol Cryst Commun 68(Pt 9):1008–1012

    Article  CAS  Google Scholar 

  80. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85(5):1241–1249

    Article  PubMed  CAS  Google Scholar 

  82. Lammerts van Bueren A, Ficko-Blean E, Pluvinage B, Hehemann J, Higgins MA, Deng L, Ogunniyi AD, Stroeher UH, El Warry N, Burke RD, Czjzek M, Paton JC, Vocadlo DJ, Boraston AB (2011) The conformation and function of a multimodular glycogen-degrading pneumococcal virulence factor. Structure 19(5):640–651

    Article  CAS  PubMed  Google Scholar 

  83. Xu J, Ren F, Huang C, Zheng Y, Zhen J, Sun H, Ko T, He M, Chen C, Chan H, Guo R, Song H, Ma Y (2014) Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Proteins Struct Funct Bioinf 82(9):1685–1693

    Article  CAS  Google Scholar 

  84. Gilding EK, Frère CH, Cruickshank A, Rada AK, Prentis PJ, Mudge AM, Mace ES, Jordan DR, Godwin ID (2013) Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nat Commun 4:1483

    Article  PubMed  CAS  Google Scholar 

  85. Janeček S, Svensson B, MacGregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49(5):429–440

    Article  PubMed  CAS  Google Scholar 

  86. Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20-diversity, structure, and function. FEBS J 276(18):5006–5029

    Article  CAS  PubMed  Google Scholar 

  87. Christiansen C, Abou Hachem M, Glaring MA, Vikso-Nielsen A, Sigurskjold BW, Svensson B, Blennow A (2009) A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett 583(7):1159–1163

    Article  CAS  PubMed  Google Scholar 

  88. Penninga D, vander Veen B, Knegtel R, van Hijum S, Rozeboom H, Kalk K, Dijkstra B, Dijkhuizen L (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 271(51):32777–32784

    Article  CAS  PubMed  Google Scholar 

  89. Sorimachi K, Le Gal-Coëffet M, Williamson G, Archer D, Williamson M (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5(5):647–661

    Article  CAS  PubMed  Google Scholar 

  90. Zhu Y, Zhang M, Kelly AR, Cheng A (2014) The carbohydrate-binding domain of overexpressed STBD1 is important for its stability and protein-protein interactions. Biosci Rep 34:311–320

    Article  CAS  Google Scholar 

  91. Park J, Song H, Jung T, Lee M, Park S (1834) Woo E and Park K (2013) A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus. Biochim Biophys Acta Proteins Proteomics 1:380–386

    Google Scholar 

  92. Liu Y, Lai Y, Chou W, Chang MD, Lyu P (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 40:321–330

    Google Scholar 

  93. Abe A, Yoshida H, Tonozuka T, Sakano Y, Kamitori S (2005) Complexes of Thermoactinomyces vulgaris R-47 α-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with α-(1,6) glycosidic linkages. FEBS J 272(23):6145–6153

    Article  CAS  PubMed  Google Scholar 

  94. van Bueren AL, Higgins M, Wang D, Burke RD, Boraston AB (2007) Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol 14(1):76–84

    Article  PubMed  CAS  Google Scholar 

  95. Ficko-Blean E, Boraston AB (2012) Insights into the recognition of the human glycome by microbial carbohydrate-binding modules. Curr Opin Struct Biol 22(5):570–577

    Article  CAS  PubMed  Google Scholar 

  96. Gourlay LJ, Santi I, Pezzicoli A, Grandi G, Soriani M, Bolognesi M (2009) Group B Streptococcus pullulanase crystal structures in the context of a novel strategy for vaccine development. J Bacteriol 191(11):3544–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lammerts van Bueren A, Boraston AB (2007) The structural basis of α-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. J Mol Biol 365(3):555–560

    Article  CAS  Google Scholar 

  98. van Bueren A, Finn R, Ausio J, Boraston A (2004) α-Glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens. Biochemistry 43(49):15633–15642

    Article  CAS  Google Scholar 

  99. Machovic M, Janeček S (2008) Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia 63(6):1057–1068

    Article  CAS  Google Scholar 

  100. Polekhina G, Gupta A, van Denderen B, Fell S, Kemp B, Stapleton D, Parker M (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13(10):1453–1462

    Article  CAS  PubMed  Google Scholar 

  101. Koay A, Woodcroft B, Petrie EJ, Yue H, Emanuelle S, Bieri M, Bailey MF, Hargreaves M, Park J, Park K, Ralph S, Neumann D, Stapleton D, Gooley PR (2010) AMPK beta subunits display isoform specific affinities for carbohydrates. FEBS Lett 584(15):3499–3503

    Article  CAS  PubMed  Google Scholar 

  102. Amodeo GA, Momcilovic M, Carlson M, Tong L (2010) Biochemical and functional studies on the regulation of the Saccharomyces cerevisiae AMPK homolog SNF1. Biochem Biophys Res Commun 397(2):197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meekins DA, Raththagala M, Husodo S, White CJ, Guo H, Koetting O, Vander Kooi CW, Gentry MS (2014) Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity. Proc Natl Acad Sci USA 111(20):7272–7277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC (2015) PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol 13(2):1–29

    Article  CAS  Google Scholar 

  105. Chaen K, Noguchi J, Omori T, Kakuta Y, Kimura M (2012) Crystal structure of the rice branching enzyme I (BEI) in complex with maltopentaose. Biochem Biophys Res Commun 424(3):508–511

    Article  CAS  PubMed  Google Scholar 

  106. Feng L, Fawaz R, Hovde S, Gilbert L, Chiou J, Geiger JH (2015) Crystal structures of Escherichia coli branching enzyme in complex with linear oligosaccharides. Biochemistry 54(40):6207–6218

    Article  CAS  PubMed  Google Scholar 

  107. Mikami B, Iwamoto H, Malle D, Yoon HJ, Demirkan-Sarikaya E, Mezaki Y, Katsuya Y (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359(3):690–707

    Article  CAS  PubMed  Google Scholar 

  108. Yamashita M, Matsumoto D, Murooka Y (1997) Amino acid residues specific for the catalytic action towards α-1,6-glucosidic linkages in Klebsiella pullulanase. J Ferment Bioeng 84(4):283–290

    Article  CAS  Google Scholar 

  109. Saburi W, Rachi-Otsuka H, Hondoh H, Okuyama M, Mori H, Kimura A (2015) Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase. FEBS Lett 589(7):865–869

    Article  CAS  PubMed  Google Scholar 

  110. Ito K, Ito S, Ishino K, Shimizu-Ibuka A, Sakai H (2007) Val326 of Thermoactinomyces vulgaris R-47 amylase II modulates the preference for α-(1,4)- and α-(1,6)-glycosidic linkages. Biochim Biophys Acta 1774(4):443–449

    Article  CAS  PubMed  Google Scholar 

  111. Kuriki T, Kaneko H, Yanase M, Takata H, Shimada J, Handa S, Takada T, Umeyama H, Okada S (1996) Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J Biol Chem 271(29):17321–17329

    Article  CAS  PubMed  Google Scholar 

  112. Saburi W, Mori H, Saito S, Okuyama M, Kimura A (2006) Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim Biophys Acta 1764(4):688–698

    Article  CAS  PubMed  Google Scholar 

  113. Oslancová A, Janecek S (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59(11):1945–1959

    Article  PubMed  Google Scholar 

  114. Beatty MK, Rahman A, Cao HP, Woodman W, Lee M, Myers AM, James MG (1999) Purification and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching enzyme from maize. Plant Physiol 119(1):255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang K, Kobayashi RS, Champreda V, Eurwilaichitr L, Tanapongpipat S (2008) Isolation and characterization of a novel thermostable neopullulanase-like enzyme from a hot spring in Thailand. Biosci Biotechnol Biochem 72(6):1448–1456

    Article  CAS  PubMed  Google Scholar 

  116. Elleuche S, Qoura FM, Lorenz U, Rehn T, Brueck T, Antranikian G (2015) Cloning, expression and characterization of the recombinant cold-active type-I pullulanase from Shewanella arctica. J Mol Catal B Enzym 11:670–677

    Google Scholar 

  117. Kang J, Park K, Choi K, Park C, Kim G, Kim D, Cha J (2011) Molecular cloning and biochemical characterization of a heat-stable type I pullulanase from Thermotoga neapolitana. Enzyme Microb Technol 48(3):260–266

    Article  CAS  PubMed  Google Scholar 

  118. Kelly A, Diderichsen B, Jorgensen S, Mcconnell D (1994) Molecular genetic analysis of the pullulanase B gene of Bacillus acidopullulyticus. FEMS Microbial Lett 115(1):97–105

    Article  CAS  Google Scholar 

  119. Albertson G, McHale R, Gibbs M, Bergquist P (1997) Cloning and sequence of a type I pullulanase from an extremely thermophilic anaerobic bacterium, Caldicellulosiruptor saccharolyticus. Biochim Biophys Acta 1354(1):35–39

    Article  CAS  PubMed  Google Scholar 

  120. Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    Article  CAS  PubMed  Google Scholar 

  121. Dinges J, Colleoni C, James M, Myers A (2003) Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15(3):666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Burton RA, Jenner H, Carrangis L, Fahy B, Fincher GB, Hylton C, Laurie DA, Parker M, Waite D, van Wegen S, Verhoeven T, Denyer K (2002) Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J 31(1):97–112

    Article  CAS  PubMed  Google Scholar 

  123. Wattebled F, Dong Y, Dumez S, Delvalle D, Planchot R, Berbezy P, Vyas D, Colonna P, Chatterjee M, Ball S, D’Hulst C (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol 138(1):184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wattebled F, Planchot V, Dong Y, Szydlowski N, Pontoire B, Devin A, Ball S, D’Hulst C (2008) Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and for overlapping functions of debranching enzymes in Arabidopsis leaves. Plant Physiol 148(3):1309–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Streb S, Delatte T, Umhang M, Eicke S, Schorderet M, Reinhardt D, Zeeman SC (2008) Starch granule biosynthesis in arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20(12):3448–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. James M, Robertson D, Myers A (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7(4):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nakamura Y, Yuki K, Park S, Ohya T (1989) Carbohydrate-metabolism in the developing endosperm of rice grains. Plant Cell Physiol 30(6):833–839

    CAS  Google Scholar 

  128. Fujita N, Kubo A, Suh DS, Wong KS, Jane JL, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44(6):607–618

    Article  CAS  PubMed  Google Scholar 

  129. Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60(3):1009–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li Q, Zhang G, Dong Z, Yu H, Gu M, Sun SSM, Liu Q (2009) Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiol Biochem 47(5):351–358

    Article  CAS  PubMed  Google Scholar 

  131. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Article  PubMed  Google Scholar 

  132. Jeon J, Ryoo N, Hahn T, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48(6):383–392

    Article  CAS  PubMed  Google Scholar 

  133. Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43(7):718–725

    Article  CAS  PubMed  Google Scholar 

  134. Nakamura Y (1996) Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci 121(1):1–18

    Article  CAS  Google Scholar 

  135. Burton RA, Zhang XQ, Hrmova M, Fincher GB (1999) A single limit dextrinase gene is expressed both in the developing endosperm and in germinated grains of barley. Plant Physiol 119(3):859–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Janulczyk R, Rasmussen M (2001) Improved pattern for genome-based screening identifies novel cell wall-attached proteins in gram-positive bacteria. Infect Immun 69(6):4019–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim J, Kim H, Lim M, Ko H, Chin J, Lee HB, Kim I, Bai S (2010) Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol Lett 32(5):713–719

    Article  CAS  PubMed  Google Scholar 

  138. Doman-Pytka M, Bardowski J (2004) Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol 30(2):107–121

    Article  CAS  PubMed  Google Scholar 

  139. Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:1–14

    Article  CAS  Google Scholar 

  140. Kelly RM, Dijkhuizen L, Leemhuis H (2009) Starch and α-glucan acting enzymes, modulating their properties by directed evolution. J Biotechnol 140(3–4):184–193

    Article  CAS  PubMed  Google Scholar 

  141. van der Maarel M, van der Veen B, Uitdehaag J, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155

    Article  PubMed  Google Scholar 

  142. Haki G, Rakshit S (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  PubMed  Google Scholar 

  143. Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M (2011) Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr 51(5):394–409

    Article  PubMed  Google Scholar 

  144. Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68(3):587–597

    Article  CAS  Google Scholar 

  145. Vester-Christensen MB, Abou Hachem M, Svensson B, Henriksen A (2010) Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins. J Mol Biol 403(5):739–750

    Article  CAS  PubMed  Google Scholar 

  146. Møller MS, Vester-Christensen MB, Jensen JM, Abou Hachem M, Henriksen A, Svensson B (2015) Crystal structure of barley limit dextrinase-limit dextrinase inhibitor (LD-LDI) complex reveals insights into mechanism and diversity of cereal type inhibitors. J Biol Chem 290(20):12614–12629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Turkenburg JP, Brzozowski AM, Svendsen A, Borchert TV, Davies GJ, Wilson KS (2009) Structure of a pullulanase from Bacillus acidopullulyticus. Proteins Struct Funct Bioinf 76(2):516–519

    Article  CAS  Google Scholar 

  148. Malle D, Itoh T, Hashimoto W, Murata K, Utsumi S, Mikami B (2006) Overexpression, purification and preliminary X-ray analysis of pullulanase from Bacillus subtilis strain 168. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hondoh H, Kuriki T, Matsuura Y (2003) Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol 326(1):177–188

    Article  CAS  PubMed  Google Scholar 

  150. Kamitori S, Kondo S, Okuyama K, Yokota T, Shimura Y, Tonozuka T, Sakano Y (1999) Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution. J Mol Biol 287(5):907–921

    Article  CAS  PubMed  Google Scholar 

  151. Kondo S, Ohtaki A, Tonozuka T, Sakano Y, Kamitori S (2001) Studies on the hydrolyzing mechanism for cyclodextrins of Thermoactinomyces vulgaris R-47 α-amylase 2 (TVAII). X-ray structure of the mutant E354A complexed with β-cyclodextrin, and kinetic analyses on cyclodextrins. J Biochem 129(3):423–428

    Article  CAS  PubMed  Google Scholar 

  152. Ohtaki A, Kondo S, Shimura Y, Tonozuka T, Sakano Y, Kamitori S (2001) Role of Phe286 in the recognition mechanism of cyclomaltooligosaccharides (cyclodextrins) by Thermoactinomyces vulgaris R-47 α-amylase 2 (TVAII). X-ray structures of the mutant TVA11 s, F286A and F286Y, and kinetic analyses of the Phe286-replaced mutant TVAIIs. Carbohydr Res 334(4):309–313

    Article  CAS  PubMed  Google Scholar 

  153. Kamitori S, Abe A, Ohtaki A, Kaji A, Tonozuka T, Sakano Y (2002) Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 α-amylase 1 (TVAI) at 1.6 Å resolution and α-amylase 2 (TVAII) at 2.3 Å resolution. J Mol Biol 318(2):443–453

    Article  CAS  PubMed  Google Scholar 

  154. Yokota T, Tonozuka T, Shimura Y, Ichikawa K, Kamitori S, Sakano Y (2001) Structures of Thermoactinomyces vulgaris R-47 α-amylase II complexed with substrate analogues. Biosci Biotechnol Biochem 65(3):619–626

    Article  CAS  PubMed  Google Scholar 

  155. Mizuno M, Tonozuka T, Uechi A, Ohtaki A, Ichikawa K, Kamitori S, Nishikawa A, Sakano Y (2004) The crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVA II) complexed with transglycosylated product. Eur J Biochem 271(12):2530–2538

    Article  CAS  PubMed  Google Scholar 

  156. Ohtaki A, Mizuno M, Tonozuka T, Sakano Y, Kamitori S (2004) Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 2 with acarbose and cyclodextrins demonstrate the multiple substrate recognition mechanism. J Biol Chem 279(30):31033–31040

    Article  CAS  PubMed  Google Scholar 

  157. Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 269(1):142–153

    Article  CAS  PubMed  Google Scholar 

  158. Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, Kimura A (2008) Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J Mol Biol 378(4):913–922

    Article  PubMed  CAS  Google Scholar 

  159. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ilinkin I, Ye J, Janardan R (2010) Multiple structure alignment and consensus identification for proteins. BMC Bioinf 11:1–8

    Article  CAS  Google Scholar 

  161. Pei J, Kim B, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36(7):2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(W1):W320–W324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Bernard Henrissat is gratefully acknowledged for sharing information on new GH13 subfamilies of which GH13_41 is addressed in the present review. This work was supported by The Danish Council for Independent Research Technology and Production Sciences (to MSM), and a Sapere Aude-Research Talent grant from the Danish Council for Independent Research Technology and Production Sciences (to MSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Sofie Møller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møller, M.S., Henriksen, A. & Svensson, B. Structure and function of α-glucan debranching enzymes. Cell. Mol. Life Sci. 73, 2619–2641 (2016). https://doi.org/10.1007/s00018-016-2241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2241-y

Keywords

Navigation