Skip to main content

Advertisement

Log in

Spermine synthase

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Spermine is present in many organisms including animals, plants, some fungi, some archaea, and some bacteria. It is synthesized by spermine synthase, a highly specific aminopropyltransferase. This review describes spermine synthase structure, genetics, and function. Structural and biochemical studies reveal that human spermine synthase is an obligate dimer. Each monomer contains a C-terminal domain where the active site is located, a central linking domain that also forms the lid of the catalytic domain, and an N-terminal domain that is structurally very similar to S-adenosylmethionine decarboxylase. Gyro mice, which have an X-chromosomal deletion including the spermine synthase (SMS) gene, lack all spermine and have a greatly reduced size, sterility, deafness, neurological abnormalities, and a tendency to sudden death. Mutations in the human SMS lead to a rise in spermidine and reduction of spermine causing Snyder-Robinson syndrome, an X-linked recessive condition characterized by mental retardation, skeletal defects, hypotonia, and movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ikeguchi Y, Bewley M, Pegg AE (2006) Aminopropyltransferases: function, structure and genetics. J Biochem 139:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Ohnuma M, Terui Y, Tamakoshi M, Mitome H, Niitsu M, Samejima K, Kawashima E, Oshima T (2005) N 1-aminopropylagmatine: a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus. J Biol Chem 280:30073–30082

    Article  CAS  PubMed  Google Scholar 

  3. Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN (2007) Structure and mechanism of spermidine synthases. Biochemistry 46:8331–8339

    Article  CAS  PubMed  Google Scholar 

  4. Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V, Liu ZJ, Tempel W, Schubot F, Rose JP, Wang BC, Brereton PS, Jenney FE, Adams MW (2007) The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 189:6057–6067

    Article  CAS  PubMed  Google Scholar 

  5. Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  6. Romer P, Faltermeier A, Mertins V, Gedrange T, Mai R, Proff P (2008) Investigations about N-aminopropyl transferases probably involved in biomineralization. J Physiol Pharmacol 59(Suppl. 5):27–37

    PubMed  Google Scholar 

  7. Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:367–372

    Article  CAS  PubMed  Google Scholar 

  8. Hosoya R, Hamana K, Niitsu M, Itoh T (2004) Polyamine analysis for chemotaxonomy of thermophilic eubacteria: Polyamine distribution profiles within the orders Aquificales, Thermotogales, Thermodesulfobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J Gen Appl Microbiol 50:271–287

    Article  CAS  PubMed  Google Scholar 

  9. Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A (2002) The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 9:27–31

    Article  CAS  PubMed  Google Scholar 

  10. Dufe VT, Luersen K, Eschbach ML, Haider N, Karlberg T, Walter RD, Al-Karadaghi S (2005) Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegans spermidine synthase. FEBS Lett 579:6037–6043

    Article  CAS  PubMed  Google Scholar 

  11. Dufe VT, Qiu W, Muller IB, Hui R, Walter RD, Al-Karadaghi S (2007) Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent Inhibitors 4MCHA and AdoDATO. J Mol Biol 373:167–177

    Article  CAS  PubMed  Google Scholar 

  12. Lu PK, Tsai JY, Chien HY, Huang H, Chu CH, Sun YJ (2007) Crystal structure of Helicobacter pylori spermidine synthase: a Rossmann-like fold with a distinct active site. Proteins 67:743–754

    Article  CAS  PubMed  Google Scholar 

  13. Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN (2008) Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem 283:16135–16146

    Article  CAS  PubMed  Google Scholar 

  14. Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blazquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128

    Article  CAS  PubMed  Google Scholar 

  15. Hamana K, Matsuzak S (1987) Distribution of polyamines in actinomycetes. FEMS Microbiol Lett 41:211–215

    Article  CAS  Google Scholar 

  16. Busse HJ, Schumann P (1999) Polyamine profiles within genera of the class Actinobacteria with LL-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 49(Pt 1):179–184

    Article  CAS  PubMed  Google Scholar 

  17. Hamana K, Niitsu M, Samejima K, Matsuzaki S (1991) Polyamine distributions in thermophilic eubacteria belonging to Thermus and Acidothermus. J Biochem 109:444–449

    CAS  PubMed  Google Scholar 

  18. Bergeron RJ, Weimar WR (1991) Increase in spermine content coordinated with siderophore production in Paracoccus denitrificans. J Bacteriol 173:2238–2243

    CAS  PubMed  Google Scholar 

  19. Hamana K, Tanaka T, Hosoya R, Niitsu M, Itoh T (2003) Cellular polyamines of the acidophilic, thermophilic and thermoacidophilic archaebacteria, Acidilobus, Ferroplasma, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodiscus and Vulcanisaeta. J Gen Appl Microbiol 49:287–293

    Article  CAS  PubMed  Google Scholar 

  20. Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H (1998) Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a SPE4 deletion mutant. Gene 210:195–210

    Article  CAS  PubMed  Google Scholar 

  21. Chattopadhyay MK, Tabor CW, Tabor H (2003) Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase. Proc Natl Acad Sci USA 100:13869–13874

    Article  CAS  PubMed  Google Scholar 

  22. Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  24. Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777

    Article  CAS  PubMed  Google Scholar 

  25. Kakehi JI, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349

    Article  CAS  PubMed  Google Scholar 

  26. Cason AL, Ikeguchi Y, Skinner C, Wood TC, Lubs HA, Martinez F, Simensen RJ, Stevenson RE, Pegg AE, Schwartz CE (2003) X-Linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Human Genet 11:937–944

    Article  CAS  Google Scholar 

  27. de Alencastro G, McCloskey DE, Kliemann SE, Maranduba CM, Pegg AE, Wang X, Bertola DR, Schwartz CE, Passos-Bueno MR, Sertie AL (2008) New SMS mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson X-linked recessive mental retardation syndrome. J Med Genet 45:539–543

    Article  PubMed  CAS  Google Scholar 

  28. Becerra-Solano LE, Butler J, Castañeda-Cisneros G, McCloskey DE, Wang X, Pegg AE, Schwartz CE, Sánchez-Corona J, Garcia-Ortiz JE (2009) A missense mutation, p.V132G, in the X-linked spermine synthase gene (SMS) causes Snyder-Robinson syndrome. Am J Med Genet A 149(A):328–335

    Google Scholar 

  29. Kesler SR, Schwartz C, Stevenson RE, Reiss AL (2009) The impact of spermine synthase (SMS) mutations on brain morphology. Neurogenetics (in press)

  30. Korhonen V-P, Niranen K, Halmekyto M, Pietilä M, Diegelman P, Parkkinen JJ, Eloranta T, Porter CW, Alhonen L, Jänne J (2001) Spermine deficiency resulting from targeted disruption of the spermine synthase gene in embryonic stem cells leads to enhanced sensitivity to antiproliferative drugs. Mol Pharmacol 59:231–238

    CAS  PubMed  Google Scholar 

  31. Meyer RA Jr, Henley CM, Meyer MH, Morgan PL, McDonald AG, Mills C, Price DK (1998) Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, Gyro (Gy) mouse. Genomics 48:289–295

    Article  CAS  PubMed  Google Scholar 

  32. Mackintosh CA, Pegg AE (2000) Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts and the sensitivity of fibroblasts to 1, 3-bis(2-chloroethyl)-N-nitrosourea. Biochem J 351:439–447

    Article  CAS  PubMed  Google Scholar 

  33. Pegg AE, Wang X (2009) Mouse models to investigate the function of spermine. Commun Integr Biol 2:271–274

    CAS  PubMed  Google Scholar 

  34. Ikeguchi Y, Wang X, McCloskey DE, Coleman CS, Nelson P, Hu G, Shantz LM, Pegg AE (2004) Characterization of transgenic mice with widespread overexpression of spermine synthase. Biochem J 381:701–707

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Ikeguchi Y, McCloskey DE, Nelson P, Pegg AE (2004) Spermine synthesis is required for normal viability, growth and fertility in the mouse. J Biol Chem 49:51370–51375

    Article  CAS  Google Scholar 

  36. Wang X, Levic S, Gratton MA, Doyle KJ, Yamoah EN, Pegg AE (2009) Spermine synthase deficiency leads to deafness and a profound sensitivity to alpha-difluoromethylornithine. J Biol Chem 284:930–937

    Article  CAS  PubMed  Google Scholar 

  37. Lyon MF, Scriver CR, Baker LR, Tenenhouse HS, Kronick J, Mandla S (1986) The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci USA 83(13):4899–4903

    Article  CAS  PubMed  Google Scholar 

  38. Grieff M, Whyte MP, Thakker RV, Mazzarella R (1997) Sequence analysis of 139 kb in Xp22.1 containing spermine synthase and 5′ region of PEX. Genomics 44:227–231

    Article  CAS  PubMed  Google Scholar 

  39. Nilsson J, Gritli-Linde A, Heby O (2000) Skin fibroblasts from spermine synthase-deficient hemizygous gryo male (Gy/Y) mice overproduce spermidine and exhibit increased resistance to oxidative stress but decreased resistance to UV irradiation. Biochem J 352:381–387

    Article  CAS  PubMed  Google Scholar 

  40. Kurata HT, Diraviyam K, Marton LJ, Nichols CG (2008) Blocker protection by short spermine analogs: refined mapping of the spermine binding site in a Kir channel. Biophys J 95:3827–3839

    Article  CAS  PubMed  Google Scholar 

  41. Fleidervish IA, Libman L, Katz E, Gutnick MJ (2008) Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proc Natl Acad Sci USA 105:18994–18999

    Article  CAS  PubMed  Google Scholar 

  42. Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894

    Article  CAS  PubMed  Google Scholar 

  43. Lopatin AN, Shantz LM, Mackintosh CA, Nichols CG, Pegg AE (2000) Modulation of potassium channels in the hearts of transgenic and mutant mice with altered polyamine biosynthesis. J Mol Cell Cardiol 32:2007–2024

    Article  CAS  PubMed  Google Scholar 

  44. Heby O (1995) DNA methlation and polyamines in embryonic development and cancer. Int J Dev Biol 39:737–757

    CAS  PubMed  Google Scholar 

  45. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, Pawel B, Guo R, Zhao H, Sekyere E, Keating J, Thomas W, Cheng NC, Murray J, Smith J, Sutton R, Venn N, London WB, Buxton A, Gilmour SK, Marshall GM, Haber M (2008) ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res 68:9735–9745

    Article  CAS  PubMed  Google Scholar 

  46. Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA, Nilsson LM, Neale G, Kramer DL, Porter CW, Cleveland JL (2005) Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7:433–444

    Article  CAS  PubMed  Google Scholar 

  47. Tolbert WD, Zhang Y, Bennett EM, Cotter SE, Ekstrom JL, Pegg AE, Ealick SE (2003) Mechanism of human S-adenosylmethionine decarboxylase proenzyme processing as revealed by the structure of the S68A mutant. Biochemistry 42:2386–2395

    Article  CAS  PubMed  Google Scholar 

  48. Toms AV, Kinsland C, McCloskey DE, Pegg AE, Ealick SE (2004) Evolutionary links as revealed by the structure of Thermotoga maritima S-adenosylmethionine decarboxylase. J Biol Chem 279:33837–33846

    Article  CAS  PubMed  Google Scholar 

  49. Willert EK, Fitzpatrick R, Phillips MA (2007) Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci USA 104:8275–8280

    Article  CAS  PubMed  Google Scholar 

  50. Willert EK, Phillips MA (2008) Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog 4:e1000183

    Article  PubMed  CAS  Google Scholar 

  51. Martin JL, McMillan FM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12:783–793

    Article  CAS  PubMed  Google Scholar 

  52. Nickerson KW, Dunkle LD, Van Etten JL (1977) Absence of spermine in filamentous fungi. J Bacteriol 129:173–176

    CAS  PubMed  Google Scholar 

  53. Kingsbury JM, Yang Z, Ganous TM, Cox GM, McCusker JH (2004) Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. Eukaryot Cell 3:752–763

    Article  CAS  PubMed  Google Scholar 

  54. Panicot M, Minguet EG, Ferrando A, Alcazar R, Blazquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants CA-018138 and GM-26290 from the National Institutes of Health, USA (to A.E.P.) and an Institute Development Fellowship (BB/E024467/1) from the Biotechnology and Biological Sciences Research Council, UK (to A.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony E. Pegg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegg, A.E., Michael, A.J. Spermine synthase. Cell. Mol. Life Sci. 67, 113–121 (2010). https://doi.org/10.1007/s00018-009-0165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0165-5

Keywords

Navigation