Skip to main content
Log in

Modulatory Effects of Oral Bovine Lactoferrin on the IgA Response at Inductor and Effector Sites of Distal Small Intestine from BALB/c Mice

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Bovine lactoferrin (bLf) up-modulates intestinal IgA that is essential for homeostasis and which might confer protection to the distal small intestine that is vulnerable to inflammation. This study analyzed the effects of bLf administered orally on the IgA response at inductive (Peyer’s patches) and effector (lamina propria) sites of the distal small intestine in mice. Groups of five healthy male BALB/c mice were orally treated with 5 mg of bLf for 7, 14, 21, or 28 days. Then, mice were killed and the distal small intestine was dissected. Intestinal fluid samples were analyzed to determine IgA and IgM levels by enzyme-immuno assay. Peyer’s patches and lamina propria were analyzed for IgA+ or IgM+ plasma cells, B, CD4+ T and CD8+ T cells as well as CD4+ T cells positive for either pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interferon-γ and interleukin (IL)-12] or for IgA-producing ILs (IL-4, -5, -10 and -6) by cytofluorometry. Antibodies, antibody-secreting cells, and B and T responses in both Peyer’s patches and lamina propria were higher in bLf-treated than bLf-untreated mice. The generation of IL-10 and IL-6 CD4+ T cells in Peyer’s patches or TNF-α and IL-12 CD4+ T cells in lamina propria showed similar response patterns. On days 14 and 28, cytokine/IL CD4+ T cell responses were increased in Peyer’s patches or decreased in lamina propria. The effect of bLf on the elicitation of IgA indicates a potential application of bLf as a nutraceutical to control inflammation in the distal small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bi BY, Lefebvre AM, Dus D et al (1997) Effect of lactoferrin on proliferation and differentiation of the Jurkat human lymphoblastic T cell line. Arch Immunol Ther Exp 45:315–320

    CAS  Google Scholar 

  • Cerutti A (2008) The regulation of IgA class switching. Nat Rev Immunol 8:421–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comstock SS, Reznikov EA, Contractor N, Donovan SM (2014) Dietary bovine lactoferrin alters mucosal and systemic immune cell responses in neonatal piglets. J Nutr 144:525–532

    Article  PubMed  CAS  Google Scholar 

  • Curran CS, Demick KP, Mansfield JM (2006) Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol 242:23–30

    Article  PubMed  CAS  Google Scholar 

  • Debbabi H, Dubarry M, Rautureau M et al (1998) Bovine lactoferrin induces both mucosal and systemic immune response in mice. J Dairy Res 65:283–293

    Article  PubMed  CAS  Google Scholar 

  • Dhennin-Duthille I, Masson M, Damiens E et al (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Drago-Serrano ME, Rivera-Aguilar V, Resendiz-Albor AA et al (2010) Lactoferrin increases both resistance to Salmonella typhimurium infection and the production of antibodies in mice. Immunol Lett 134:35–46

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Debbabi H, Dubarry M et al (2006) Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem Cell Biol 84:303–311

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Debbabi H, Blais A et al (2007) Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues. Int Immunopharmacol 7:1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Haversen L, Ohlsson BG, Hahn-Zoric M et al (2002) Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol 220:83–95

    Article  PubMed  CAS  Google Scholar 

  • Hu WL, Mazurier J, Montreuil J et al (1990) Isolation and partial characterization of a lactotransferrin receptor from mouse intestinal brush border. Biochemistry 29:535–541

    Article  PubMed  CAS  Google Scholar 

  • Hwang S, Kerry JW, Kruzel ML et al (2011) Lactoferrin augmentation of the BCG vaccine leads to increased pulmonary integrity. Tuberc Res Treat 2011:835410

    PubMed  PubMed Central  Google Scholar 

  • Iigo M, Shimamura M, Matsuda E et al (2004) Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: a possible explanation for inhibition of carcinogenesis and metastasis. Cytokine 25:36–44

    Article  PubMed  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Des 13:829–843

    Article  PubMed  CAS  Google Scholar 

  • Maynard CL, Elson CO, Hatton RD et al (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Na YJ, Han SB, Kang JS et al (2004) Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int Immunopharmacol 4:1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Hiraguchi M, Ushida K (2006) The composition of intestinal bacteria affects the level of luminal IgA. Biosci Biotechnol Biochem 70:3031–3035

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Cava CF, Ishihara S, Rumi MA et al (2003) Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 170:3977–3985

    Article  PubMed  CAS  Google Scholar 

  • Pabst R (1987) The anatomical basis for the immune function of the gut. Anat Embryol 176:135–144

    Article  PubMed  CAS  Google Scholar 

  • Puddu P, Carollo MG, Belardelli FS et al (2007) Role of endogenous interferon and LPS in the immunomodulatory effects of bovine lactoferrin in murine peritoneal macrophages. J Leukoc Biol 82:347–353

    Article  PubMed  CAS  Google Scholar 

  • Puddu P, Valenti P, Gessani S (2009) Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie 91:11–18

    Article  PubMed  CAS  Google Scholar 

  • Resendiz-Albor AA, Esquivel R, Lopez-Revilla R et al (2005) Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci 76:2783–2803

    Article  PubMed  CAS  Google Scholar 

  • Resendiz-Albor AA, Reina-Garfias H, Rojas-Hernandez S et al (2010) Regionalization of pIgR expression in the mucosa of mouse small intestine. Immunol Lett 128:59–67

    Article  PubMed  CAS  Google Scholar 

  • Sfeir RM, Dubarry M, Boyaka PN et al (2004) The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J Nutr 134:403–409

    PubMed  CAS  Google Scholar 

  • Spadaro M, Caorsi C, Ceruti P et al (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22:2747–2757

    Article  PubMed  CAS  Google Scholar 

  • Takakura N, Wakabayashi H, Yamauchi K et al (2006) Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem Cell Biol 84:363–368

    Article  PubMed  CAS  Google Scholar 

  • Talukder MJ, Takeuchi T, Harada E (2003) Characteristics of lactoferrin receptor in bovine intestine: higher binding activity to the epithelium overlying Peyer’s patches. J Vet Med A Physiol Pathol Clin Med 50:123–131

    Article  PubMed  CAS  Google Scholar 

  • Tezuka H, Abe Y, Iwata M et al (2007) Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448:929–933

    Article  PubMed  CAS  Google Scholar 

  • Wang WP, Iigo M, Sato J et al (2000) Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Jpn J Cancer Res 91:1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Ward PP, Chu H, Zhou X et al (1997) Expression and characterization of recombinant murine lactoferrin. Gene 204:171–176

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Wagner SJ, Martínez I et al (2011) Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60:325–333

    Article  PubMed  CAS  Google Scholar 

  • Wilk KM, Hwang SA, Actor JK (2007) Lactoferrin modulation of antigen-presenting-cell response to BCG infection. Postepy Hig Med Dosw (Online) 61:277–282

    Google Scholar 

  • Zimecki M, Mazurier J, Spik G et al (1995) Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology 86:122–127

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from CONACyT (167345), SIP-IPN and COFAA-IPN. Ivonne Maciel Arciniega-Martínez is a fellow of CONACyT (3047069). Aldo Arturo Reséndiz-Albor, Luvia Enid Sánchez-Torres and Rafael Campos-Rodríguez are fellows of COFAA and EDI-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Arturo Reséndiz-Albor.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arciniega-Martínez, I.M., Campos-Rodríguez, R., Drago-Serrano, M.E. et al. Modulatory Effects of Oral Bovine Lactoferrin on the IgA Response at Inductor and Effector Sites of Distal Small Intestine from BALB/c Mice. Arch. Immunol. Ther. Exp. 64, 57–63 (2016). https://doi.org/10.1007/s00005-015-0358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-015-0358-6

Keywords

Navigation