Skip to main content
Log in

Oxidative energy metabolism in Alzheimer brain

Studies in early-onset and late-onset cases

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Reduction of the cerebral metabolic rate of glucose is one of the most predominant abnormalities generally found in the Alzheimer brain, whereas the cerebral metabolic rate of oxygen is only slightly diminished or not at all the beginning of this dementive disorder. This metabolic abnormality may induce severe functional disturbances, obviously preceding morphobiological changes. From the cerebral metabolic rates of oxidized glucose and oxygen, the cerebral ATP formation rate was calculated in incipient early-onset, incipient late-onset and stable advanced dementia of Alzheimer type. A reduction of ATP formation was found from at least 7% in incipient early-onset, to around 20% in incipient late-onset DAT, and from 35% to more than 50% in stable advanced dementia. This approximation was adjusted to findings demonstrating diminished activities of enzymes active in glucose metabolism and formation of oxidation equivalents for ATP production from substrates other than glucose. A reduction for energy formation to the same rrange was found, as was also recently reported, in vivo in Alzheimer patients. From this rather theoretical point of view, a permanent loss of energy by at least 7–20% in incipient and progressively advancing dementia of the Alzheimer type may by assumed, with an increasing tendency in stable advanced dementia to around 50% energy loss. This energy deficit may have drastic impacts on brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allweis C., Landau T., Abeles M., and Magnus J. (1966) The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by perfused cat brain.J. Neurochem. 13, 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Arai H., Kobayashi K., Ichimiya K., Kosaka K., and Iizuka R. (1985) Free amino acids in post-mortem cerebral cortices from patients with Alzheimer-type dementia.Neurosci. Res. 2, 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Blass J. P. and Gibson G. E. (1979) Carbohydrates and acetylcholine synthesis: Implications for cognitive disorders, inBrain Acetylcholine and Neuropsychiatric Disease (Davis K. L. and Berger P. A., eds.), pp. 89–101, Plenum, New York.

    Google Scholar 

  • Blass J. P., Baker A. C., Ko L. W., and Black R. S. (1990) Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation.Arch. Neurol. 47, 864–869.

    PubMed  CAS  Google Scholar 

  • Bowen D. M., White P., Spillane J. A., Goodhardt M. J., Curzon G., Iwangoff P. Meier-Ruge W., and Davison A. N. (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia?Lancet *, 11–14.

    PubMed  Google Scholar 

  • Brown G. G., Levine S. R., Gorell J. M., Pettegrew J. W., Gdowski J. W., Bueri J. A., Helpern J. A., and Welch K. M. A. (1989) In vivo31P NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia.Neurology 39, 1423–1427.

    PubMed  CAS  Google Scholar 

  • Browning M., Baudry M., Bennett W. F., and Lynch G. (1981) Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria.J. Neurochem. 36, 1932–1940.

    Article  PubMed  CAS  Google Scholar 

  • Chase T. N., Foster N. L., Fedio P., DiChiro G., Brooks R., and Patronas N. (1983) Alzheimer’s disease: Local cerebral metabolism studies using the18F-fluorodeoxy-positron emission tomography technique, inAging. Vol. 22: Aging of the Brain (Samuel D., Algeri S., Gershon S., Grimm V. E., and Toffano G., eds.), pp. 143–154, Raven, New York.

    Google Scholar 

  • Cohen P. J., Alexander S. C., Smith T. C., Reivich M., and Wollman H. (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man.J. Appl. Physiol. 23, 183–189.

    PubMed  CAS  Google Scholar 

  • Cohen M. L., Golde T. E., Usiak, M. F., Younkin L. H., and Younkin S. G. (1988) In situ hybridization of nucleus basalis neurons shows increased beta-amyloid mRNA in Alzheimer disease.Proc. Natl. Acad. Sci USA 85, 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  • Coleman P. D. and Flood D. G. (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease.Neurobiol. Aging 8, 521–545.

    Article  PubMed  CAS  Google Scholar 

  • Cutler N. R., Haxby J. V., Duara R., Grady C. L., Kay A. D., Kessler R. M., Sundaram M., and Rapoport S. I. (1985) Clinical history, brain metabolism, and neuropsychological function in Alzheimer’s disease.Ann. Neurol. 18, 298–309.

    Article  PubMed  CAS  Google Scholar 

  • Dastur D. K. (1985) Cerebral blood flow and metabolism in normal human aging, pathological aging, and senile dementia.J. Cereb. Blood Flow Metab. 5, 1–9.

    PubMed  CAS  Google Scholar 

  • Dastur D. K., Lane M. H., Hansen D. B., Kety S. S., Butler R. N., Perlin S., and Sokoloff L. (1963) Effect of aging on cerebral circulation and metabolism in man, inHuman Aging—A Biological and Behavioural Study (Birren J. E., Butler R. N., Greenhouse S. W., Sokoloff L., and Yarrow M. R., eds.), pp. 59–76, US Department of Health, Education, and Welfare (DHEW publication no. 986), Washington DC.

  • Dietze G., Wicklmayr M., Hepp K. D., and Mehnert H. (1975) Kohlenhydratverwertung des Zentralnervensystems und des Skelettmuskels während längerem Fasten, inArbeitstagung Dtsch. Diabetesgesellsch (Jahnke K. and Mehnert H., eds.), pp. 110–113, Kirchheim, Mainz.

    Google Scholar 

  • Ellison D. W., Beal M. F., Mazurek M. F., Bird E. D., and Martin J. B. (1986) A postmorten study of amino acid neurotransmitters in Alzheimer’s disease.Ann. Neurol. 20, 616–621.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M. and Silver I. A. (1989) ATP and brain function.J. Cereb. Blood Flow Metab. 9, 2–19.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Liss L., and Horrocks L. A. (1988) Neurochemical aspects of Alzheimer’s disease: Involvement of membrane phospholipids.Metabol. Brain Dis. 3, 19–35.

    Article  CAS  Google Scholar 

  • Foster N. L., Chase T. N., Fedio P., Patronas N. J., Brooks R. A., and DiChiro G. (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography.Neurology 33, 961–965.

    PubMed  CAS  Google Scholar 

  • Foster N. L., Chase T. N., Mansi L., Brooks R., Fedio P., Patronas N. J., and DiChiro G. (1984) Cortical abnormalities in Alzheimer’s disease.Ann. Neurol. 16, 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak R. S., Pozzilli C., Legg N. J., Du Boulay G. H., Marshall J., Lenzi G. L., and Jones T. (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography.Brain 104, 753–778.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E., Sheu K. F. R., Blass J. P., Baker A., Carlson K. C., Harding B., and Perrino P. (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease.Arch. Neurol. 45, 836–840.

    PubMed  CAS  Google Scholar 

  • Gottstein U., Bernsmeier A., and Sedlmeyer I. (1964) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. II. Untersuchungen mit substratspezifischen enzymatischen Methoden bei Kranken mit verminderter Hirndurchblutung auf dem Boden einer Arteriosklerose der Hirngefäbe.Klin Wochenschr. 42, 310–313.

    Article  PubMed  CAS  Google Scholar 

  • Gottstein U., Müller W., Berghoff W., Gärtner H., and Held K. (1971) Zur Utilization von nicht-veresterten Fettsäuren und Ketonkörpern im Gehirn des Menschen.Klin. Wochenschr. 49, 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Hansford R. G. and Castro F. (1985) Role of Ca2+ in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes.Biochem. J. 227, 129–136.

    PubMed  CAS  Google Scholar 

  • Haxby J. V., Duara R., Grady C. L., Cutler N. R., and Rapoport S. I. (1985) Relations between neuropsychological and cerebral asymmetries in early Alzheimer’s disease.J. Cereb. Blood Flow Metab. 5, 193–200.

    PubMed  CAS  Google Scholar 

  • Higgins G. A., Lewis D. A., Bahmanyar S., Goldgaber D., Gajdusek D. C., Young W. G., Morrison J. H., and Wilson M. C. (1988) Differential regulation of amyloid-beta-protein mRNA expression within hippocamal neuronal subpopulations in Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 85, 1297–1301.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S. (1970a) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns.Klin. Wochenschr. 48, 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S. (1970b) Der Hirnstoffwechsel und die Häufigkeit cerebraler Durchblutungsstörungen beim organischen Psychosyndrom.Dtsch. Z. Nervenheilk. 197, 285–292.

    Article  CAS  Google Scholar 

  • Hoyer S. (1988) Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significance.Age 11, 158–166.

    Article  Google Scholar 

  • Hoyer S. and Becker K. (1966) Hirndurchblutung und Hirnstoffwechselbefunde bei neuropsychiatrisch Kranken.Nervenarzt 37, 322–324.

    PubMed  CAS  Google Scholar 

  • Hoyer S. and Nitsch R. (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type.J. Neural Transm. 75, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S., Oesterreich K., and Wagner O. (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type?J. Neurol. 235, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S., Nitsch R., and Oesterreich K. (1990) Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type.Neurosci. Lett. 117, 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S., Nitsch R., and Oesterreich K. (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: A cross-sectional comparison against advanced late-onset and incipient-earlyonset cases.J. Neural Transm. (PD-Sect.)3, 1–14.

    Article  CAS  Google Scholar 

  • Hyman B. T., van Hoesen G. W., Damasio A. R., and Barnes C. L. (1984) Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation.Science 225, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  • Hyman B. T., van Hoesen G. W., Kromer L. J., and Damasio A. R. (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease.Ann. Neurol. 20, 472–481.

    Article  PubMed  CAS  Google Scholar 

  • Iwangoff P., Armbruster R., Enz A., Meier-Ruge W., and Sandoz P. (1980) Glycolytic enzymes from human autoptic brain cortex: Normally aged and demented cases, inBiochemistry of Dementia (Roberts P. J. ed.), pp. 258–262, Wiley, Chichester.

    Google Scholar 

  • Kang J., Lemaire H.-G., Meterbeck A., Salbaum J. M., Masters C. L., Grzeschik K.-H., Multhaup G., Beyreuther K., and Müller-Hill B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.Nature 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Kety S. S. and Schmidt C. F. (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values.J. Clin. Invest. 27, 476–483.

    Article  Google Scholar 

  • Kumar A., Schapiro M. B., Grady C., Haxby J. V., Wagner E., Salerno J. A., Friedland R. P., and Rapoport S. I. (1991) High-resolution PET studies in Alzheimer’s disease.Neuropsychopharmacology 4, 35–46.

    PubMed  CAS  Google Scholar 

  • Lehninger A. L. (1971)Bioenergetics. The molecular basis of biological energy transformations. 2nd ed. Benjamin, Menlo Park, CA.

    Google Scholar 

  • Lewis D. A., Higgins G. A., Young W. G., Goldgaber D., Gajdusek D. C., Wilson M. C., and Morrison J. H. (1988) Distribution of precursor amyloid-beta-protein messenger RNA in human cerebral cortex: Relationship to neurofibrillary tangles and neuritic plaques.Proc. Natl. Acad. Sci. USA 85, 1691–1695.

    Article  PubMed  CAS  Google Scholar 

  • Liguri G., Taddei N., Nassi P., Latorraca S., Nediani C., and Sorbi S. (1990) Changes in Na+, K+-ATP-ase, Ca2+-ATP-ase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer’s disease.Neurosci. Lett. 112, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Lipton P. and Whittingham T. S. (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus.J. Physiol. 325, 51–65.

    PubMed  CAS  Google Scholar 

  • Little J. R., Hori S., and Spitzer J. J. (1969) Oxidation of radioactive palmitate and glucose infused into the cortical subarachnoid space.Am. J. Physiol. 217, 919–922.

    PubMed  CAS  Google Scholar 

  • Lying-Tunell U., Lindblad B. S., Malmlund H. O., and Persson B. (1981) Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. II. Presenile dementia and normal-pressure hydrocephalus.Acta Neurol. Scand. 63, 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Mann D. M. A., Yates P. O., and Marcyniuk B (1985) Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age.J. Neurol. Sci. 69, 139–159.

    Article  PubMed  CAS  Google Scholar 

  • Marcus D. L., de Leon M. J., Goldman J., Logan J., Christman D. R., Wolf A. P., Fowler J. S., Hunter K., Tsai J., Pearson J., and Freedman M. L. (1989) Altered glucose metabolism in microvessels from patients with Alzheimer’s disease.Ann. Neurol. 26, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Marcus D. L., de Leon M., Swerdlow R., Kaplan H., Tsai J., and Freedman M. L. (1988) Decreased brain glucose metabolism in vivo and in microvessels in patients with Alzheimer’s disease.Clin. Res. 36, 486 A.

    Google Scholar 

  • McNamara D., Horwitz B., Grady L. C., and Rapoport S. I. (1987) Topographical analysis of glucose metabolism, as measured with positron emission tomography, in dementia of the Alzheimer type: Use of linear histograms.Int. J. Neurosci. 36, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Moore S. and Stein W. H. (1954a) Procedures for the chromatographic determination of amino acids on four per cent cross-linked sulfonated polystyrene resins.J. Biol. Chem. 211, 893–906.

    PubMed  CAS  Google Scholar 

  • Moore S. and Stein W. H. (1954b) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds.J. Biol. Chem. 211, 907–913.

    PubMed  CAS  Google Scholar 

  • Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., and Cahill G. F., Jr. (1967) Brain metabolism during fasting.J. Clin. Invest. 46, 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  • Perry E. K., Perry R. H., Tomlinson B. E., Blessed G., and Gibson P. H. (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: Possible cholinergic “compartment” of pyruvate dehydrogenase.Neurosci. Lett. 18, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Procter A. W., Palmer A. M., Francis P. T., Low S. L., Neary D., Murphey E., Doshi R., and Bowen D. M., (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease.J. Neurochem. 50, 790–802.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman N. B., Ross P. S., Berger M., and Goodman M. N. (1974) Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.Brain Res. 138, 1–10.

    CAS  Google Scholar 

  • Sasaki H., Muramoto O., Kanazawa I., Arai H., Kosaka K., and Iizuka R. (1986) Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type.Ann. Neurol. 19, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö B. K. (1978)Brain Energy Metabolism. Wiley, Chichester.

    Google Scholar 

  • Siesjö B. K. (1981) Cell damage in the brain: A speculative synthesis.J. Cereb. Blood Flow Metab. 1, 155–185.

    PubMed  Google Scholar 

  • Sims N. R., Bowen D. M., Neary D., and Davison A. N. (1983) Metabolic processes in Alzheimer’s disease: Adenine nucleotide content and production of14CO2 from (U-14C) glucose in vitro in human neocortex.J. Neurochem. 41, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  • Sims N. R., Blass J. P., Murphy C., Bowen D. M., and Neary D. (1987a) Phosphofructokinase activity in the brain in Alzheimer’s disease.Ann. Neurol. 21, 509–510.

    Article  PubMed  CAS  Google Scholar 

  • Sims N. R., Finegan J. M., Blass J. P., Bowen D. M., and Neary D. (1987b) Mitochondrial function in brain tissue in primary degenerative dementia.Brain Res. 436, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Singh H., Usher S., and Poulos A. (1989) Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain.J. Neurochem. 53, 1711–1718.

    Article  PubMed  CAS  Google Scholar 

  • Sorbi S., Bird E. D., and Blass J. P. (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain.Ann. Neurol. 13, 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer J. J. (1973) CNS and fatty acid metabolism.Physiologist 16, 55–68.

    PubMed  CAS  Google Scholar 

  • Sumpter P. Q., Mann D. M. A., Davies C. A., Yates P. O., Snowdon J. S., and Neary D. (1986) An ultrastructural analysis of the effects of accumulation of neurofibrillary tangle in pyramidal neurons of the cerebral cortex in Alzheimer’s disease.Neuropathol. Appl. Neurobiol. 12, 305–319.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow R., Marcus D. L., Landman J., Harooni M., and Freedman M. L. (1989) Brain glucose and ketone body metabolism in Alzheimer’s disease.Clin. Res. 37, 461 A.

    Google Scholar 

  • Wan B., La Noue K. F., Cheung J. Y., and Scaduto R. C. Jr. (1989) Regulation of citric acid cycle by calcium.J. Biol. Chem. 264, 13430–13439.

    PubMed  CAS  Google Scholar 

  • Westerberg E., Deshpande J. K., and Wieloch T. (1987) Regional differences in arachidonic acid release in rat hippocampal CA1 and CA3 regions during cerebral ischemia.J. Cereb. Blood Flow Metab. 7, 189–192.

    PubMed  CAS  Google Scholar 

  • Yates C. M., Butterworth J., Tennant M. C., and Gordon A. (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer type and other dementias.J. Neurochem. 55, 1624–1630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyer, S. Oxidative energy metabolism in Alzheimer brain. Molecular and Chemical Neuropathology 16, 207–224 (1992). https://doi.org/10.1007/BF03159971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159971

Index Entries

Navigation