Skip to main content
Log in

1,1′-Ethylidenebis(tryptophan) (peak E) induces functional activation of human eosinophils and interleukin 5 production from T lymphocytes: Association of eosinophilia-myalgia syndrome with al-tryptophan contaminant

  • Original Articles
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

This study was designed to clarify the important association between eosinophilia-myalgia syndrome (EMS) and thel-tryptophan contaminant, “Peak E.” To determine the functional activation of eosinophils induced by Peak E, eosinophil cationic protein (ECP) release was examined. Peak E augmented the release of ECP from peripheral blood normodense eosinophils by degranulation. Proliferative analysis using the human eosinophilic leukemia cell line EoL-3 showed prominent cellular replication in the presence of Peak E. Moreover, Peak E upregulated interleukin 5 (IL-5) receptor levels on normodense eosinophils. Of particular interest, Peak E-stimulated human splenic T cells produced bipactive and immunoreactive IL-5. Marked induction of IL-5 mRNA in Peak E-stimulated T cells was also shown by reverse-transcriptase polymerase chain reaction (RT-PCR). In contrast,l-tryptophan without the contaminant showed none of these effects. Thus, these data suggest that Peak E might be involved in the pathogenesis of EMS through bimodal mechanism including IL-5 generation by T cells and potentiation of eosinophil functional activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eosinophilia-myalgia syndrome—New Mexico. Morbid Mortal Week Rep 38:765–767, 1989

    Google Scholar 

  2. Hertzman PA, Blevins WL, Mayer J, Greenfield B, Ting M, Gleich GJ: Association of the eosinophilia-myalgia syndrome with the ingestion of tryptophan. N Engl J Med 322:869–873, 1990

    PubMed  Google Scholar 

  3. Silver RM, Heyes MP, Maize JC, Quearray B, Vionnet-Fuasset M, Sternberg EM: Scleroderma, fascitis, and eosinophilia associated with the ingestion of tryptophan. N Engl J Med 322:874–881, 1990

    PubMed  Google Scholar 

  4. Belongia EA, Hedberg CW, Gleich GJ, White KE, Mayeno AN, Loegerings DA, Dunnette SL, Pirie PL, MacDonald KL, Osterholm MT: An investigation of the cause of the eosinophilia-myalgia syndrome associated with tryptophan use. N Engl J Med 323:357–365, 1990

    PubMed  Google Scholar 

  5. Slutsker L, Hoesly FC, Miller L, Williams LP, Watson JC, Fleming DW: Eosinophilia-myalgia syndrome associated with exposure to tryptophan from a single manufacturer. JAMA 264:213–217, 1990

    PubMed  Google Scholar 

  6. Mayeno AN, Lin F, Foote CS, Loegering DA, Ames MM, Hedberg CW, Gleich GJ: Characterization of “Peak E” a novel amino acid associated with eosinophilia-myalgia syndrome. Science 250:1707–1708, 1990

    PubMed  Google Scholar 

  7. Centers for Disease Control (CDC): 1990 Update: analysis of L-tryptophan for the etiology of eosinophilia-myalgia syndrome. Morbid Mortal Week rep 39:789–790, 1990

    Google Scholar 

  8. Crofford LJ, Rader JI, Dalakas MC, Hill RH, Page SW, Needham LL, Brady LS, Heyes MP, Wilder RL, Gold PW, Illa I, Smith C:l-Tryptophan implicated in human eosinophilia-myalgia syndrome causes fascitis and perimyositis in the Lewis rat. J Clin Invest 86:1757–1763, 1990

    PubMed  Google Scholar 

  9. Love LA, Rader JI, Crofford LJ, Raybourne RB, Principato MA, Page SW, Trucksess MW, Smith MJ, Dugan EM, Turner ML, Zelazowski E, Zelazowski P, Sternberg EM: Pathological and immunological effects of ingestingl-tryptophan and 1,1′-ethylidenebis (l-tryptophan) in Lewis rats. J Clin Invest 91:804–811, 1993

    PubMed  Google Scholar 

  10. Rothenberg ME, Owen WF, Silberstein DS, Woods J, Soberman RJ, Austen KF, Stevens RL: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J Clin Invest 81:1986–1992, 1988

    PubMed  Google Scholar 

  11. Owen WF, Rothenberg ME, Silberstein DS, Gasson JC, Stevens RL, Austen KF, Soberman RJ: Regulation of human eosinophil viability, density, and function by granulocyte/macrophage colony-stimulating factor in the presence of 3T3 fibroblasts. J Exp Med 166:129–141, 1987

    PubMed  Google Scholar 

  12. Rothenberg ME, Petersen J, Stevens RL, Silberstein DS, Mckenzie DT, Austen KF, Owen WF: IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol 143:2311–2316, 1989

    PubMed  Google Scholar 

  13. Lopez AF, Sanderson GJ, Gamble JR, Campbell HD, Young IG, Vadas MA: Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167:219–224, 1988

    PubMed  Google Scholar 

  14. Clutterbuck EJ, Hirst EM, Sanderson CJ: Human interleukin-5 (IL-5) regulated the production of eosinophils in human bone marrow cultures; Comparison and interaction with IL-1, IL-3, IL-6, and GM-CSF. Blood 73:1504–1512, 1989

    PubMed  Google Scholar 

  15. Clutterbuck EJ, Sanderson C: Regulation of human eosinophil precursor production by cytokines: A comparison of recombinant human interleukin-1 (rhIL-1), rhIL-3, rhIL-5, rhIL-6, and rh granulocyte-macrophage colony stimulating factor. Blood 75:1774–1779, 1990

    PubMed  Google Scholar 

  16. Limaye AP, Abrams JS, Silver JE, Ottesen EA, Nutman TB: Regulation of parasite-induced eosinophilia: Selective increased interleukin-5 production in helminth-infected patients. J Exp Med 172:399–402, 1990

    PubMed  Google Scholar 

  17. Enokihara H, Kajitani H, Nagashima S, Tsunogake S, Takano N, Saito K, Furusawa S, Shishido H, Hitoshi Y, Takatsu K: Interleukin 5 activity in sera from patients with eosinophilia. Br J Haematol 75:458–462, 1990

    PubMed  Google Scholar 

  18. Coffman RL, Seymour BW, Hudak S, Jackson J, Rennick D: Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science 245:308–310, 1989

    PubMed  Google Scholar 

  19. Yamaoka KA, Miyasaka N, Kashiwazaki S:l-tryptophan contaminant “Peak E” and interleukin-5 production from T cells. Lancet 338:1468, 1991

    Google Scholar 

  20. Toyo'oka T, Yamazaki T, Tanimoto T, Sato K, Sato M, Toyoda M, Ishibashi M, Toshihira K, Uchiyama M: Characterization of contaminants in EMS-associatedl-tryptophan samples by high-performance liquid chromatography. Chem Pharm Bull 39:820–822, 1991

    PubMed  Google Scholar 

  21. Yamaoka KA, Claésson H-E, Rosén A: Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes. J Immunol 143:1996–2000, 1989

    PubMed  Google Scholar 

  22. Fukuda Y, Hashino J, Haruyama M, Tsuruoka N, Nakazato H, Nakanishi T: A sandwich enzyme-linked immunosorbent assay for human interleukin-5. J Immunol 143:89–94, 1991

    Google Scholar 

  23. Saito H, Bourinbaiar A, Ginsburg M, Minato K, Ceresi E, Yamada K, Machover D, Breard J, Mathe G: Establishment and characterization of a new human eosinophilic leukemia cell line. Blood 66:1233–1240, 1985

    PubMed  Google Scholar 

  24. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159, 1987

    PubMed  Google Scholar 

  25. Owen WFJ, Petersen J, Scheff DM, Folkerth RD, Anderson RJ, Corson JM, Sheffer AL, Austen KF: Hypodense eosinophils and interleukin 5 activity in the blood of patients with eosinophilia-myalgia syndrome. Proc Natl Acad Sci USA 87:8647–8651, 1990

    PubMed  Google Scholar 

  26. Ackerman SJ, Loegering DA, Venge P, Olsson I, Harley JB, Fauci AS, Gleich GJ: Distinctive cationic proteins of the human eosinophil granule: Major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin. J Immunol 131:2977–2982, 1983

    PubMed  Google Scholar 

  27. Owen WF, Rothenberg ME, Petersen J, Weller PF, Silberstein D: Interleukin-5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med 170:343–348, 1989

    PubMed  Google Scholar 

  28. Lopez AF, To LB, Yang Y-C, Gamble JR, Shannon MF, Burns GF, Dyson PG, Juttner CA, Clark S, Vadas MA: Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci USA 84:2761–2765, 1987

    PubMed  Google Scholar 

  29. Broide DH, Paine MM, Firestein GS: Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest 90:1414–1424, 1992

    PubMed  Google Scholar 

  30. Chihara J, Plumas J, Gruart V, Tavernier J, Prin L, Capron A, Capron M: Characterization of a receptor for interleukin 5 on human eosinophils: Variable expression and induction by granulocyte/macrophage colony-stimulating factor. J Exp Med 172:1347–1351, 1990

    PubMed  Google Scholar 

  31. Saito H, Miyamoto T: Peak-E-induced production of granulocyte-macrophage colony-stimulating factor (GM-CSF) in human peripheral blood mononuclear cells.In Proceedings of the Research in Health and Welfare MHW of Japan [Investigation of the causal mechanisms of eosinophilia myalgia syndrome (EMS) associated with L-tryptophan products], 1992, pp 43–49

  32. Barnharter ER, Maggio VL, Alexander LR, Turner WE, Patterson DG, Needham LL: Bacitracin-associated peptides and contaminatedl-tryptophan. Lancet 336:742, 1990

    PubMed  Google Scholar 

  33. Hibbs JR, Mittleman B, Hill P, Medsger TA:l-Tryptophan-associated eosinophilic fasciitis prior to the 1989 eosinophilia-myalgia syndrome outbreak. Arth Rheum 35:299–303, 1992

    Google Scholar 

  34. Smith B, Prickop DJ: Central-nervous-system effects of ingestion ofl-tryptophan by normal subjects. N Engl J Med 267:1338–1341, 1962

    PubMed  Google Scholar 

  35. Eastman CL, Guilarte TR: Cytotoxicity of 3-hydroxy kynurenine in a neuronal hybrid cell line. Brain Res 28:225–231, 1989

    Google Scholar 

  36. Sternberg BM, Van Woert MH, Young SN, Magmussen I, Baker H, Gauthier S, Osterland CK: Development of a scleroderma-like illness during therapy withl-5-hydroxytryptophan and carbidopa. N Engl J Med 303:782–787, 1980

    PubMed  Google Scholar 

  37. Deoliveira JS, Auerbach SB, Sullivan KM, Sale GE: Fatal eosinophilia myalgia syndrome in a marrow transplant patient attributed to toal nutrition with a solution containing tryptophan. Bone Marrow Transplant 11:163–167, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaoka, K.A., Miyasaka, N., Inuo, G. et al. 1,1′-Ethylidenebis(tryptophan) (peak E) induces functional activation of human eosinophils and interleukin 5 production from T lymphocytes: Association of eosinophilia-myalgia syndrome with al-tryptophan contaminant. J Clin Immunol 14, 50–60 (1994). https://doi.org/10.1007/BF01541175

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01541175

Key words

Navigation