Skip to main content
Log in

Multicomponent composites, electrical networks and new types of continued fraction II

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The outstanding problem of systematically developing rigorous bounds on the complex effective conductivity tensor σ* ofd-dimensional,n-component composites withn>2 is solved. The bounds incorporate information contained in successively higher order correlation functions which reflect the composite geometry. Explicit expressions are given for many of the bounds and some, but not all of them, are represented by nested sequences of circles in the complex plane that enclose, and in fact converge to, each diagonal element of σ*. They are derived from the fractional linear matrix transformations found in Part I that recursively link σ* with a hierarchy of complex effective tensors Ω(j),j=0, 1, 2, ..., of increasing dimension,d(n−1)j. Elementary bounds on Ω(j) confining the diagonal elements of Ω(j) or its inverse to half-plane, wedge or open polygon regions of the complex plane, imply narrow bounds on σ* which converge to the exact value of σ* in the limit asj → ∞. When the component conductivities are real these bounds are more restrictive than the corresponding variational bounds. Besides applying to the effective conductivity σ*, the bounds extend to a wide class of matrix-valued multivariate functions called Ω-functions, and thereby to conduction in polycrystalline media, viscoelasticity in composites, and conduction in multi-component, multiterminal, linear electrical networks. The analytic and invariance properties of Ω-functions are explored and within this class of function most of the bounds are found to be optimal or at least attainable. The bounds obtained here are essentially a generalization to matrix-valued, multivariate functions of the nested sequence of lens-shaped bounds in the complex plane derived by Gragg and Baker for single variable Stieltjes functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milton, G.W.: Multicomponent composites, electrical networks and new types of continued fraction I. Commun. Math. Phys.111, 281–327 (1987)

    Google Scholar 

  2. Dell'Antonio, G.F., Figari, R., Orlandi, E.: An approach through orthogonal projections to the study of inhomogeneous or random media with linear response. Ann. Inst. Henri Poincaré44, 1 (1986)

    Google Scholar 

  3. Wiener, O.: Abhandlungen der Mathematisch-Physischen Klasse der Königlichen Sächsischen Gesellschaft der Wissenschaften32, 509 (1912)

    Google Scholar 

  4. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys.33, 3125 (1962)

    Google Scholar 

  5. Beran, M.J.: Use of the variational approach to determine bounds for the effective permittivity in random media. Nuovo Cimento38, 771 (1965)

    Google Scholar 

  6. Kröner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids25, 137 (1977)

    Google Scholar 

  7. Phan-Thien, N., Milton, G.W.: New bounds on the effective thermal conductivity of N-phase materials. Proc. R. Soc. Lond A380, 333 (1982)

    Google Scholar 

  8. Prager, S.: Improved variational bounds on some bulk properties of a two-phase random medium. J. Chem. Phys.50, 4305 (1969)

    Google Scholar 

  9. Willis, J.R.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids25, 185 (1977)

    Google Scholar 

  10. Murat, F., Tartar, L.: Calcul des variations et homogenisation. In: Les méthodes d'homogénéisation: théorie et applications en physique, Coll. de la Dir. des Etudes et Recherches d'Electricite dé France, pp. 319–370. Paris: Eyrolles 1985

    Google Scholar 

  11. Lurie, K.A., Cherkaev, A.V.: Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. R. Soc. Edinb.99A, 71 (1984)

    Google Scholar 

  12. Kohn, R.V., Milton, G.W.: On bounding the effective conductivity of anisotropic composites. In: Homogenization and effective moduli of materials and media. Ericksen, J., Kinderlehrer, D., Kohn, R., Lions, J.L. (eds.). Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  13. Milton, G.W., Kohn, R.V.: Variational bounds on the effective moduli of anisotropic composites (in preparation)

  14. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. Commun. Pure Appl. Math. (to appear)

  15. Bendsoe, M.P.: Optimization of plates. Thesis, Math. Inst. Tech. Univ. Denmark, Lyngby, Denmark 1983

    Google Scholar 

  16. Bergman, D.J.: The dielectric constant of a composite material — a problem in classical physics. Phys. Rep. C43, 377 (1978)

    Google Scholar 

  17. Korringa, J.: The influence of pore geometry on the dielectric dispersion of clean sandstones. Geophysics49, 1760 (1984)

    Google Scholar 

  18. Golden, K., Papanicolaou, G.: Bounds for effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys.90, 473 (1983)

    Google Scholar 

  19. Bergman, D.J.: Rigorous bounds for the complex dielectric constant of a two-component composite. Ann. Phys.138, 78 (1982)

    Google Scholar 

  20. Milton, G.W.: Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys.52, 5286 (1981); see also Theoretical studies of the transport properties of inhomogeneous media, unpublished report TP/79/1: University of Sydney 1979

    Google Scholar 

  21. Schulgasser, K., Hashin, Z.: Bounds for effective permittivities of lossy dielectric composites. J. Appl. Phys.47, 424 (1975)

    Google Scholar 

  22. Milton, G.W.: Bounds on the transport and optical properties of a two-component composite. J. Appl. Phys.52, 5294 (1981)

    Google Scholar 

  23. McPhedran, R.C., Milton, G.W.: Bounds and exact theories for the transport properties of inhomogeneous media. Appl. Phys. A26, 207 (1981)

    Google Scholar 

  24. McPhedran, R.C., McKenzie, D.R., Milton, G.W.: Extraction of structural information from measured transport properties of composites. Appl. Phys. A29, 19 (1982)

    Google Scholar 

  25. Gajdardziska-Josifovska, M.: Optical properties and microstructure of cermets. Unpublished M. Sc. thesis: University of Sydney 1986

  26. Felderhof, B.U.: Bounds for the complex dielectric constant of a two-phase composite. Physica126A, 430 (1984)

    Google Scholar 

  27. Milton, G.W., Golden, K.: Thermal conduction in composites. In: Thermal conductivity 18. Ashworth, T., Smith, D.R. (eds.). New York: Plenum Press 1985

    Google Scholar 

  28. Golden, K.: Bounds on the complex permittivity of a multicomponent material. J. Mech. Phys. Solids34, 333 (1986)

    Google Scholar 

  29. Milton, G.W., McPhedran, R.C.: A comparison of two methods for deriving bounds on the effective conductivity of composites. In: Macroscopic properties of disordered media. Burridge, R. et al. (eds.). Lecture Notes in Physics, Vol. 154, p. 183. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  30. Keller, J.B.: A theorem on the conductivity of a composite medium. J. Math. Phys.5, 548 (1964)

    Google Scholar 

  31. Torquato, S., Beasley, J.D.: Effective properties of fibre-reinforced materials. I. Bounds on the effective thermal conductivity of dispersions of fully penetrable cylinders. Int. J. Engng. Sci.24, 415 (1986)

    Google Scholar 

  32. Stell, G., Joslin, C.: To be published

  33. Schulgasser, K.: On a phase interchange relationship for composite materials. J. Math. Phys.17, 378 (1976)

    Google Scholar 

  34. Korringa, J., LaTorraca, G.A.: Application of the Bergman-Milton theory of bounds to the permittivity of rocks. J. Appl. Phys.60, 2966 (1986)

    Google Scholar 

  35. Hashin, J.: Analysis of composite materials. J. Appl. Mech. Trans. ASME50, 481 (1983)

    Google Scholar 

  36. McPhedran, R.C., McKenzie, D.R., Phan-Thien, N.: Transport properties of two-phase composite materials. In: Advances in the mechanics and flow of granular materials. Shahinpoor, M., Wohlbier, R. (eds.). New York: McGraw-Hill 1983

    Google Scholar 

  37. Willis, J.R.: Variational and related methods for the overall properties of composite materials. In: Advances in applied mechanics. Yih, C.-S. (ed.) New York: Academic Press21, 2–78 (1981)

    Google Scholar 

  38. McCoy, J.J.: Macroscopic response of continua with random microstructures. In: Mechanics today, Nemat-Nasser, S. (ed.), pp. 1–40. Oxford, New York: Pergamon Press 1981

    Google Scholar 

  39. Christensen, R.M.: Mechanics of composite materials. New York: Wiley 1979

    Google Scholar 

  40. Watt, J.P., Davies, G.F., O'Connell, R.J.: The elastic properties of composite materials. Rev. Geophy. Space Phys.14, 541 (1976)

    Google Scholar 

  41. Hale, D.K.: The physical properties of composite materials. J. Mater. Sci.11, 2105 (1976)

    Google Scholar 

  42. Beran, M.J.: Statistical continuum theories, pp. 181–256. New York: Interscience 1968

    Google Scholar 

  43. Niklasson, G.A., Granquist, C.G.: Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films. J. Appl. Phys.55, 3382 (1984)

    Google Scholar 

  44. Torquato, S., Stell, G.: Macroscopic approach to transport in two-phase random media. CEAS report # 352 1980

  45. Nevanlinna, R.: Asymptotische Entwickelungen beschrankter Funktionen und das Stieltjessche Momenten problem. Ann. Acad. Sci. Fenn. A18, 1 (1922)

    Google Scholar 

  46. Shohat, J.A., Tamarkin, J.D.: The problem of moments. Baltimore: Waverly Press 1943

    Google Scholar 

  47. Henrici, P., Pfluger, P.: Truncation error estimates for Stieltjes fractions. Numer. Math.9, 129 (1966)

    Google Scholar 

  48. Gragg, W.B.: Truncation error bounds for g-fractions. Numer. Math.11, 370 (1968)

    Google Scholar 

  49. Common, A.K.: Páde approximants and bounds to series of Stieltjes. J. Math. Phys.9, 32 (1967)

    Google Scholar 

  50. Baker, G.A., Jr.: Best error bounds for Padé approximants to convergent series of Stieltjes. J. Math. Phys.10, 814 (1969)

    Google Scholar 

  51. Baker, G.A., Jr., Graves-Morris, P.R.: Encyclopedia of mathematics and its applications, Vols. 13 and 14. Rota, G.-C. (ed.). London: Addison-Wesley 1981

    Google Scholar 

  52. Jones, W.B., Thron, W.J.: Encyclopedia of mathematics and its applications, Vol. 11. Rota, G.-C. (ed.). London: Addison-Wesley 1980

    Google Scholar 

  53. Golden, K., Papanicolaou, G.: Bounds for effective parameters of multicomponent media by analytic continuation. J. Stat. Phys.40, 655 (1985)

    Google Scholar 

  54. Bergman, D.J., Milton, G.W.: Unpublished

  55. Golden, K.: Bounds for effective parameters of multicomponent media by analytic continuation. Ph. D. thesis: New York University 1984

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. E. Fisher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milton, G.W. Multicomponent composites, electrical networks and new types of continued fraction II. Commun.Math. Phys. 111, 329–372 (1987). https://doi.org/10.1007/BF01238903

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238903

Keywords

Navigation