Skip to main content
Log in

The resonance properties of the physical gill ofCorixa punctata and their significance in sound reception

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The air bubble comprising the physical gill of the Corixinae is a stimulus-conducting apparatus external to the tympanal organs, which transforms water-borne sound into airborne sound. Like all air bubbles under water, it is a system capable of oscillation and resonance; the resonant frequency depends primarily on the volume of the air bubble.

  2. 2.

    A computer-controlled method was developed by which the resonance properties of the respiratory air bubble ofCorixa punctata could be measured in the freely moving animal under controlled acoustic conditions.

  3. 3.

    The resonant frequencyf rof the air bubble varies with air volume V according to the relationf rV −2.3.

  4. 4.

    When the air supply is replenished by taking in air at the water surface, the enlarged volume of the air bubble brings about a stepwise reduction in resonant frequency. Thereafter, the resonant frequency gradually rises as the volume slowly shrinks, until the animal again takes in air.

  5. 5.

    In the temperature range 4 °C to 16 °C resonant frequencies between 1.35 kHz and 3.35 kHz are observed. The resonant frequency of an “average” animal at constant temperature varies owing to the change in air-bubble volume, by ±500 Hz about the mean (central) frequency. The distributions of the resonant frequencies shift toward lower frequencies as the water temperature rises. The central frequency falls about linearly from 2.4 kHz at 4 °C to 1.95 kHz at 16 °C (Figs. 6–8).

  6. 6.

    The resonant peak of the air bubble is ca. 14 dB above the low-frequency level, as calculated from the logarithmic decrement of 0.6±0.1. As compared with spherical air bubbles, the oscillations of the respiratory air bubble are considerably more damped.

  7. 7.

    When caused to resonate by external alternating pressures, the air bubble of the physical gill exhibits internal pressure alternation of greatest amplitude in the region of its resonant frequency. The range over which the resonant frequency varies coincides with the range of frequencies to which the mesothoracic tympanal organ is especially sensitive; the latter bandwidth is extended by the bilateral asymmetry of the sense cell A1 (Fig. 9).

  8. 8.

    The results are discussed in relation to the sound sensitivity of the tympanal organs and the function of the physical gill in sound production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmann L, Schäfer C (1970) Lehrbuch der Experimentalphysik, Bd I, Gobrecht H (Hrsg) Mechanik, Akustik, Wärme, de Gruyter, Berlin

    Google Scholar 

  • Ege R (1915) On the respiratory function of the air stores carried by some aquatic insects. Z Allg Physiol 17:81–124

    Google Scholar 

  • Exner ML (1951) Messung der Dämpfung pulsierender Luftblasen in Wasser. Acustica Akust Beih 1:25–33

    Google Scholar 

  • Finke C (1968) Lautäußerung und Verhalten vonSigara striata undCallicorixa praeusta (Corixidae Leach, Hydrocorisae Latr.). Z Vergl Physiol 58:398–422

    Google Scholar 

  • Finke C, Prager J (1981) An audiospectrographic study of male stridulation in the genusCorixa Geoffr. (Hemiptera, Corixidae). Z Naturforsch 36c:189–191

    Google Scholar 

  • Hagemann J (1910) Beiträge zur Kenntnis vonCorixa. Zool Jahrb Abt Anat Ontog Tiere 30:373–426

    Google Scholar 

  • Jansson A (1973) Stridulation and its significance in the genusCenocorixa (Hemiptera, Corixidae). Behaviour 46:1–36

    Google Scholar 

  • Landau LD, Lifschitz EM (1970) Lehrbuch der theoretischen Physik, Bd 6, Hydrodynamik. Vieweg, Braunschweig

    Google Scholar 

  • Lauer H (1951) Über die thermische Dämpfung von Blasen verschiedener Gase in Wasser. Acustica Akust Beih 1:12–24

    Google Scholar 

  • Lauterborn W (1970) Resonanzkurven von Gasblasen in Flüssigkeiten. Acustica 23:73–81

    Google Scholar 

  • Meyer E, Neumann E-G (1967) Physikalische und technische Akustik. Vieweg, Braunschweig

    Google Scholar 

  • Meyer E, Tamm K (1939) Eigenschwingung und Dämpfung von Gasblasen in Flüssigkeiten. Akust Z 4:145–152

    Google Scholar 

  • Michel K (1977) Feinstrukturelle Besonderheiten im mesothorakalen Tympanalorgan der RuderwanzeCallicorixa praeusta (Heteroptera: Corixidae). Entomol Germ 3(4):316–323

    Google Scholar 

  • Minnaert M (1933) On musical air-bubbles and the sounds of running water. Philos Mag 16:235–248

    Google Scholar 

  • Popham EJ (1960) On the respiration of aquatic Hemiptera Heteroptera with special reference to the Corixidae. Proc Zool Soc (Lond) 135:209–242

    Google Scholar 

  • Prager J (1973) Die Hörschwelle des mesothorakalen Tympanalorgans vonCorixa punctata Ill. (Heteroptera, Corixidae). J Comp Physiol 86:55–58

    Google Scholar 

  • Prager J (1976) Das mesothorakale Tympanalorgan vonCorixa punctata Ill. (Heteroptera, Corixidae). J Comp Physiol 110:33–50

    Google Scholar 

  • Prager J, Larsen ON (1981) Asymmetrically hearing in the water bugCorixa punctata Ill. observed with laser vibrometry. Naturwissenschaften 68:579–580

    Google Scholar 

  • Prager J, Streng R (1981) Schallrezeption und ihre Anpassung an die aquatile Lebensweise bei Corixiden. Mitt Dtsch Ges Allg Angew Entomol 3:239–242

    Google Scholar 

  • Prager J, Theiß J (1982) The effect of tympanal position on sound-sensitivity of the metathoracic scolopale organ ofCorixa. J Insect Physiol 28:447–452

    Google Scholar 

  • Rahn H, Paganelli CV (1968) Gas exchange in gas gills of diving insects. Respir Physiol 5:145–164

    Google Scholar 

  • Skudrzyk E (1954) Die Grundlagen der Akustik. Springer, Wien

    Google Scholar 

  • Strasberg M (1953) The pulsation frequency of nonspherical gas bubbles in liquids. J Acoust Soc Am 25:536–537

    Google Scholar 

  • Theiß J (1981) Schallerzeugung und Stridulationsaktivität bei Corixiden. Mitt Dtsch Ges Allg Angew Entomol 3:235–238

    Google Scholar 

  • Theiß J (1982) Generation and radiation of sound by stridulating water insects as exemplified by the corixids. Behav Ecol Sociobiol 10:225–235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prager, J., Streng, R. The resonance properties of the physical gill ofCorixa punctata and their significance in sound reception. J. Comp. Physiol. 148, 323–335 (1982). https://doi.org/10.1007/BF00679017

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00679017

Keywords

Navigation