Skip to main content
Log in

Signals determining translational start-site recognition in eukaryotes and their role in prediction of genetic reading frames

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A special methionyl-tRNA (RNAi) is universally required to initiate translation. The conservation of this reactant throughout evolution, as well as its unusual decoding properties, suggested an alternate mechanism for tRNA-mRNA interactions at initiation. We have reported that the sequence of bases neighboring the start codons of many eubacterial genes are complementary not only to the 16S rRNA 3′ end and to the anticodon of tRNAi, but, also, have the potential to base-pair the D, T or extended anticodon loops of this tRNAi. The coding properties of tRNAi and mutations that affect translation suggest that these signals may function. This hypothesis explains the observation that unusual triplets can start prokaryotic and mitochondrial genes and predicts the occurrence of other reading frames. Furthermore, it suggests a unifying model of chain initiation based on RNA-RNA contacts and displacements.

Here we examine the start domain of 290 eukaryotic genes for their ability to base-pair the tRNAi loops and the 18S rRNA. We observe that both methionine start, and methionine coding regions have the potential to pair with the 18S rRNA, but that the nucleotide distribution about start codons strongly favoured such pairings over that near internal AUGs. The 5′ extended anticodon of tRNAi is methylated, and was not represented in the mRNA with high frequency. However, the tetramer AUGg did occur with high frequency in the start domain. A modification of the tRNAi T loop also decreases its base-pairing potential. Interestingly, complementarity to the T loop did not occur with high frequency in the start sites. The early coding region, 10 to 34 nucleotides 3′ to the initiator AUG, is complementary to the tRNAi D loop in many cases, while no such affinity is found near internal AUGs.

The nucleotides around initiator AUGs were heavily biassed toward the sequence gccaccAUGgcg. No such tendency was noted around internal AUGs. Although the role of this sequence bias is unclear, the sequence gccaccAUGg has been shown by Kozak to promote initiation. Another distinguishing feature was a C-rich tract 7 to 34 nucleotides 5′ to the initiator AUGs.

Ability to pair with more than eight bases of the start consensus sequence, matching of 6 or 7 nucleotides to the D loop on the 3′ side, an C-richness on the 5′ side were used as criteria for distinguishing start AUGs. The program successfully identified over 52% of the sequences submitted to it, wrongly identified less than 4% and labelled the rest as uncertain suggesting a promising approach to reliable detection of eukaryote genetic reading frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GoldL, PribnowD, SchneiderT, ShinedlingS, SingerBS & StormoG (1981) Ann. Rev. Microbiol. 35: 365–403

    Google Scholar 

  2. SteitzJA (1979) In: GodbergerRF (ed) Biological Regulation and Development, Plenum Press, New York, Vol. I, pp. 349–399

    Google Scholar 

  3. KozakM (1983) Microbiol. Rev. 47: 1–45

    Google Scholar 

  4. ShineJ & DalgarnoL (1975) Nature (London) 254: 34–38

    Google Scholar 

  5. SteitzJA & JakesK (1975) Proc. Natl. Acad. Sci. USA 72: 4734–4738

    Google Scholar 

  6. NeilsonT, KofoidEC & GanozaMC (1980) Nucl. Acids Res. Symp. Ser. 7: 321–323

    Google Scholar 

  7. DunnJJ, Buzash-PollertE & StudierFW (1978) Proc. Natl. Acad. Sci. USA 75: 2741–2745

    Google Scholar 

  8. PtashneM, BackmanK, HumayunMZ, JeffreyA, MaurerR, MeyerB & SauerRT (1976) Science 194: 156–161

    Google Scholar 

  9. BeckE, SommerR, AuerswaldEA, KurzC, ZinkB, OsterburgG, ShalderH, SugimotoK, SugisakiH, OkamotoT & TakanamiM (1978) Nucl. Acids Res. 5: 4495–4503

    Google Scholar 

  10. FarabaughPJ (1978) Nature (London) 274: 765–769

    Google Scholar 

  11. GodsonGN, BarrellBG, StadenR & FiddesJC (1978) Nature (London) 276: 236–247

    Google Scholar 

  12. PirrotaB (1979) Nucl. Acids Res. 6: 1495–1508

    Google Scholar 

  13. SingletonCK, RoederWD, BogosianG, SomervilleRL & WeithHL (1980) Nucl. Acids Res. 8: 1551–1560

    Google Scholar 

  14. RobertsTM, KacichR & PtashneM (1979) Proc. Natl. Acad. Sci. USA. 76: 760–764

    Google Scholar 

  15. HagenbuchleO, SanterM & SteitzJA (1978) Cell 13: 551–563

    Google Scholar 

  16. SarganDR, GregorySP & ButterworthPHW (1982) FEBS Lett. 47: 133–136

    Google Scholar 

  17. SalserW (1978) Cold Spring Harbor Symp. Quant. Biol. 42: 985–1002

    Google Scholar 

  18. BothGW (1979) FEBS Lett. 101: 220–224

    Google Scholar 

  19. MarounLE, DegnerM, PrecupJW & FranciskovichPP (1987) J. Theor. Biol. 91: 85–98

    Google Scholar 

  20. AzadAA & DeaconNJ (1979) Biochem. Biophys. Res. Commun. 86: 568–576

    Google Scholar 

  21. NakashimaK, DarzynkiewiczE & ShatkinA (1980) Nature (London) 286: 226–231

    Google Scholar 

  22. SchroederHW, LiarakosCD, GuptaRC, RanderathK & O'MalleyBW (1979) J. Biochem. 18: 5798–5808

    Google Scholar 

  23. YamaguchiK, HidakaS & MiuraKL (1982) Proc. Natl. Acad. Sci. USA. 79: 1012–1016

    Google Scholar 

  24. DeWachterR (1979) Nucl. Acids Res. 7: 2045–2054

    Google Scholar 

  25. KozakM (1987) Nucl. Acids Res. 15: 8125–8148

    Google Scholar 

  26. ShermanF & StewartJW (1983) In: StruthersJN, JonesEW & BirachJR, (eds) The Molecular Biology of Saccharomyces cerevisiae: Metabolism and Gene Expression, Cold Spring Harbor Laboratory, New York, pp. 301–334

    Google Scholar 

  27. BaimSB, GoodhueCT, PietrasDF, EusticeDC, LabhardM, FriedmanLR, HampseyMD, StilesIT & ShermanF (1985) In: CalenderR & GoldL (eds) Sequence Specificity in Transcription and Translation, Alan R. Liss Inc., New York, pp. 351–362

    Google Scholar 

  28. BaralleFE & BrownleeGG (1978) Nature (London) 274: 84–87

    Google Scholar 

  29. GenBank ref. 44.0 (August 1986), IBM PC-format floppydisk version. Bolt, Beranek and Newman, Inc., distr. by IRL Press, McLean, VA, U.S.A.

  30. SchneiderC, OwenMJ, BanvilleD & WilliamsJG (1984) Nature 311: 675–678

    Google Scholar 

  31. SorgeJ, WestC, WestwoodB & BeutlerE (1985) Proc. Natl. Acad. Sci. USA. 82: 7289–7293

    Google Scholar 

  32. OuJ-H, MasiarzF, KanYM, GoldfineID, RothRA & RutterWJ (1985) Cell 40: 747–758

    Google Scholar 

  33. HurleyJB, FongHKW, TeplowDB, DreyerWJ, SimonMI (1984) Proc. Natl. Acad. Sci. USA 81: 6948–6952

    Google Scholar 

  34. KimuraS, GonzalesFJ & NebertDW (1984) J. Biol. Chem. 259: 10705–10713

    Google Scholar 

  35. LinzerDIH & TalamantesF (1985) J. Biol. Chem. 260: 9574–9579

    Google Scholar 

  36. KozacM (1978) Cell 15: 1109–1123

    Google Scholar 

  37. FiersW, ContrerasR, HaegemanG, RogiersR, Van deVoordeA, VanHeuverswynH, VanHerrewegheJ, VolckaertG & YsebaertM (1978) Nature (London) 273: 113–120

    Google Scholar 

  38. ContrerasR, RogiersR, Van deVoordeA & FiersW (1977) Cell 12: 529–538

    Google Scholar 

  39. GanozaMC, KofoidEC, MarlièreP & LouisBG (1987) Nucl. Acids Res. 15: 345–360

    Google Scholar 

  40. Louis BG & Ganoza MC (1987) Cold Spring Harbour Abstracts: Translational Control, Cold Spring Harbour, NY, USA, p. 110

  41. GanozaMC, MarlièreP, KofoidEC & LouisBG (1985) Proc. Natl. Acad. Sci. USA. 82: 4587–4595

    Google Scholar 

  42. GanozaMC, FraserA & NeilsonT (1978) Biochemistry 17: 2769–2775

    Google Scholar 

  43. GanozaMC, SullivanP, CunninghamC, KofoidEC, HaderP & NeilsonT (1982) J. Biol. Chem. 257: 8228–8232

    Google Scholar 

  44. EckhardtH & LuhrmannR (1981) Biochemistry 20: 2075–2080

    Google Scholar 

  45. TaniguchiT & WeissmannC (1978) J. Mol. Biol. 118: 533–565

    Google Scholar 

  46. SchmittM, ManderscheidU, KyriatsoulisA, BrinkmannU & GassenHG (1980) Eur. J. Biochem. 109: 291–299

    Google Scholar 

  47. GanozaMC (1977) Can. J. Biochem. 55: 257–281

    Google Scholar 

  48. EMBL Gene Sequence Library, Rel. 3.0 (1983). Eur. Mol. Biol. Organization, Heidelberg

  49. StormoG, SchneiderTD & GoldL (1982) Nucl. Acids Res. 10: 2791–2996

    Google Scholar 

  50. GanozaMC (1988) In: Kleinkauf, vonDohren & Jalnicke, (eds) The Roots of Modern Biochemistry, Walter de Gruyter and Co., Berlin, New York, pp. 541–549

    Google Scholar 

  51. HamiltonR, WatanabeCK & deBoerH (1987) Nucl. Acids Res. 15: 3581–3593

    Google Scholar 

  52. RichA & Raj BhandaryUL (1976) Annu. Rev. Biochem. 45: 805–860

    Google Scholar 

  53. JayG & KaempferR (1975) J. Biol. Chem. 250: 5742–5748

    Google Scholar 

  54. CunninghamC & GanozaMC (1984) Mol. Biol. Rep. 10: 115–121

    Google Scholar 

  55. UhlenbeckOC (1972) J. Mol. Biol. 65: 25–41

    Google Scholar 

  56. WooNH, RoeBA & RichA (1980) Nature (London) 286: 346–351

    Google Scholar 

  57. SchevitzRW, PodjarnyAD, KrisnamachariN, HughesJJ & SiglerPB (1979) Nature (London) 278: 188–190

    Google Scholar 

  58. GaussDH & SprizlM (1981) Nucl. Acids Res. 9: 1–23

    Google Scholar 

  59. FickettJW (1982) Nucl. Acids Res. 10: 5303–5318

    Google Scholar 

  60. MichelCJ (1986) J. Theor. Biol. 120: 223–236

    Google Scholar 

  61. BibbMJ, FindlayPR & JohnsonMW (1984) Gene 30: 157–166

    Google Scholar 

  62. StadenR & McLachlanAD (1982) Nucl. Acids Res. 10: 141–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louis, B.G., Ganoza, M.C. Signals determining translational start-site recognition in eukaryotes and their role in prediction of genetic reading frames. Mol Biol Rep 13, 103–115 (1988). https://doi.org/10.1007/BF00539058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539058

Key words

Navigation