Skip to main content
Log in

Global fit to three neutrino mixing: critical look at present precision

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an up-to-date global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino oscillations. We provide results on the determination of θ 13 from global data and discuss the dependence on the choice of reactor fluxes. We study in detail the statistical significance of a possible deviation of θ 23 from maximal mixing, the determination of its octant, the ordering of the mass states, and the sensitivity to the CP violating phase, and discuss the role of various complementary data sets in those respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  2. V. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].

    ADS  Google Scholar 

  3. M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    Article  ADS  Google Scholar 

  6. S.M. Bilenky, J. Hosek and S. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].

    ADS  Google Scholar 

  7. P. Langacker, S. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, Nucl. Phys. B 282 (1987) 589 [INSPIRE].

    Article  ADS  Google Scholar 

  8. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  9. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  10. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  12. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C.G. Garcia, M. Maltoni, T. Schwetz and J. Salvado, NuFit webpage, http://www.nu-fit.org.

  14. G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  15. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  16. P. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, Combining accelerator and reactor measurements of θ 13: the first result, JHEP 05 (2012) 023 [arXiv:1111.3330] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Bergstrom, Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations, JHEP 08 (2012) 163 [arXiv:1205.4404] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Y. Itow. Atmospheric neutrinos. Results from running experiments, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).

  19. Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande i, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].

    ADS  Google Scholar 

  20. K2K collaboration, M. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE] .

    ADS  Google Scholar 

  21. R. Nichols. Final MINOS results, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).

  22. MINOS collaboration, P. Adamson et al., An improved measurement of muon antineutrino disappearance in MINOS, Phys. Rev. Lett. 108 (2012) 191801 [arXiv:1202.2772] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Sakashita. Results from T2K, talk given at the 36th International Conference on High Energy Physics, Melbourne, Australia, July 4-11 (2012).

  24. T2K collaboration, K. Abe et al., First muon-neutrino disappearance study with an off-axis beam, Phys. Rev. D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].

    ADS  Google Scholar 

  25. T. Nakaya. New results from T2K, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).

  26. CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].

    ADS  Google Scholar 

  27. Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  28. Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].

    ADS  Google Scholar 

  29. M. Ishitsuka. Double Chooz results, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).

  30. D. Dwyer. Improved measurement of electron-antineutrino disappearance at Daya Bay, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).

  31. KamLAND collaboration, A. Gando et al., Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].

    ADS  Google Scholar 

  32. B. Cleveland, T. Daily, J. Davis, Raymond, J.R. Distel, K. Lande, et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].

  33. F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].

    ADS  Google Scholar 

  34. SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].

    ADS  Google Scholar 

  35. Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].

    ADS  Google Scholar 

  36. SNO collaboration, B. Aharmim et al., Measurement of the ν e and total B-8 solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].

    ADS  Google Scholar 

  37. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury neutrino observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].

    ADS  Google Scholar 

  38. SNO collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the Sudbury neutrino observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].

    Article  ADS  Google Scholar 

  39. SNO collaboration, B. Aharmim et al., Combined analysis of all three phases of solar neutrino data from the Sudbury neutrino observatory, arXiv:1109.0763 [INSPIRE].

  40. G. Bellini, J. Benziger, D. Bick, S. Bonetti, G. Bonfini, et al., Precision measurement of the 7Be solar neutrino interaction rate in borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].

    ADS  Google Scholar 

  42. P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

  43. M. Gonzalez-Garcia and C. Pena-Garay, Three neutrino mixing after the first results from K2K and KamLAND, Phys. Rev. D 68 (2003) 093003 [hep-ph/0306001] [INSPIRE].

    ADS  Google Scholar 

  44. K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from U-235 thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].

    ADS  Google Scholar 

  45. T. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].

    ADS  Google Scholar 

  46. G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  47. T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].

    Article  ADS  Google Scholar 

  48. E. Ciuffoli, J. Evslin and H. Li, The reactor anomaly after Daya Bay and RENO, arXiv:1205.5499 [INSPIRE].

  49. Y. Declais, H. de Kerret, B. Lefievre, M. Obolensky, A. Etenko, et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].

    ADS  Google Scholar 

  50. A. Kuvshinnikov, L. Mikaelyan, S. Nikolaev, M. Skorokhvatov and A. Etenko, Measuring the anti-electron-neutrino + pN + e + cross-section and β decay axial constant in a new experiment at Rovno NPP reactor. (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].

    ADS  Google Scholar 

  51. Y. Declais, J. Favier, A. Metref, H. Pessard, B. Achkar, et al., Search for neutrino oscillations at 15 meters, 40 meters and 95 meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].

    ADS  Google Scholar 

  52. G. Vidyakin, V. Vyrodov, I. Gurevich, Y. Kozlov, V. Martemyanov, et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].

    Google Scholar 

  53. G. Vidyakin, V. Vyrodov, Y. Kozlov, A. Martemyanov, V. Martemyanov, et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].

    ADS  Google Scholar 

  54. H. Kwon, F. Boehm, A. Hahn, H. Henrikson, J. Vuilleumier, et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].

    ADS  Google Scholar 

  55. CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino oscillation experiments at the Gosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].

    ADS  Google Scholar 

  56. Z. Greenwood, W. Kropp, M. Mandelkern, S. Nakamura, E. Pasierb-Love, et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].

    ADS  Google Scholar 

  57. A. Afonin, S. Ketov, V. Kopeikin, L. Mikaelyan, M. Skorokhvatov, et al., A study of the reaction anti-electron-neutrino + pe + + N on a nuclear reactor, Sov. Phys. JETP 67 (1988)213 [INSPIRE].

    Google Scholar 

  58. S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].

    ADS  Google Scholar 

  59. J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and θ 13 with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [INSPIRE].

    ADS  Google Scholar 

  60. P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  61. T. Bezerra, H. Furuta and F. Suekane, Measurement of effective \( \varDelta m_{31}^2 \) using baseline differences of Daya Bay, RENO and double CHOOZ reactor neutrino experiments, arXiv:1206.6017 [INSPIRE].

  62. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Neutrino masses and mixing: 2008 status, Nucl. Phys. Proc. Suppl. 188 (2009) 27 [INSPIRE].

    Article  ADS  Google Scholar 

  64. T. Schwetz, M. Tortola and J.W. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero theta (13), PoS IDM2008 (2008) 072 [arXiv:0812.3161] [INSPIRE].

    Google Scholar 

  66. A. Balantekin and D. Yilmaz, Contrasting solar and reactor neutrinos with a non-zero value of θ 13, J. Phys. G 35 (2008) 075007 [arXiv:0804.3345] [INSPIRE].

    ADS  Google Scholar 

  67. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New solar composition: the problem with solar models revisited, Astrophys. J. 705 (2009) L123 [arXiv:0909.2668] [INSPIRE].

    Article  ADS  Google Scholar 

  69. J.N. Bahcall, Gallium solar neutrino experiments: absorption cross-sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [INSPIRE].

    ADS  Google Scholar 

  70. H. Minakata, H. Sugiyama, O. Yasuda, K. Inoue and F. Suekane, Reactor measurement of θ 13 and its complementarity to long baseline experiments, Phys. Rev. D 68 (2003) 033017 [Erratum ibid. D 70 (2004) 059901] [hep-ph/0211111] [INSPIRE].

  71. P. Huber, M. Lindner, T. Schwetz and W. Winter, Reactor neutrino experiments compared to superbeams, Nucl. Phys. B 665 (2003) 487 [hep-ph/0303232] [INSPIRE].

    Article  ADS  Google Scholar 

  72. G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE].

    ADS  Google Scholar 

  73. K.B.M. Mahn and M.H. Shaevitz, Comparisons and combinations of reactor and long-baseline neutrino oscillation measurements, Int. J. Mod. Phys. A 21 (2006) 3825 [hep-ex/0409028] [INSPIRE].

    ADS  Google Scholar 

  74. A. Cervera, A. Donini, M. Gavela, J. Gomez Cadenas, P. Hernández, et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731-732] [hep-ph/0002108] [INSPIRE].

  75. M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].

    ADS  Google Scholar 

  76. E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].

    Article  ADS  Google Scholar 

  77. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Google Scholar 

  78. S. Mikheev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  79. NOvA collaboration, D. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μ ν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].

  80. J. Thomas. MINOS and perspectives for long-baseline experiments in the U.S., talk given at Neutrinos at the forefront of elementary particle physics and astrophysics, Lyon France, Oct. 22-24 (2012).

  81. V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].

    ADS  Google Scholar 

  82. O. Peres and A.Y. Smirnov, Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and CP-violation, Nucl. Phys. B 680 (2004) 479 [hep-ph/0309312] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Petcov, Diffractive-like (or parametric resonance-like?) enhancement of the Earth (day-night) effect for solar neutrinos crossing the Earth core, Phys. Lett. B 434 (1998) 321 [hep-ph/9805262] [INSPIRE].

    ADS  Google Scholar 

  84. E.K. Akhmedov, A. Dighe, P. Lipari and A. Smirnov, Atmospheric neutrinos at Super-Kamiokande and parametric resonance in neutrino oscillations, Nucl. Phys. B 542 (1999) 3 [hep-ph/9808270] [INSPIRE].

    Article  ADS  Google Scholar 

  85. E.K. Akhmedov, Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the Earth, Nucl. Phys. B 538 (1999) 25 [hep-ph/9805272] [INSPIRE].

    Article  ADS  Google Scholar 

  86. M. Chizhov, M. Maris and S. Petcov, On the oscillation length resonance in the transitions of solar and atmospheric neutrinos crossing the Earth core, hep-ph/9810501 [INSPIRE].

  87. M. Chizhov and S. Petcov, New conditions for a total neutrino conversion in a medium, Phys. Rev. Lett. 83 (1999) 1096 [hep-ph/9903399] [INSPIRE].

    Article  ADS  Google Scholar 

  88. E.K. Akhmedov, M. Maltoni and A.Y. Smirnov, 1-3 leptonic mixing and the neutrino oscillograms of the Earth, JHEP 05 (2007) 077 [hep-ph/0612285] [INSPIRE].

    Article  ADS  Google Scholar 

  89. C. Kim and U. Lee, Comment on the possible electron neutrino excess in the Super-Kamiokande atmospheric neutrino experiment, Phys. Lett. B 444 (1998) 204 [hep-ph/9809491] [INSPIRE].

    ADS  Google Scholar 

  90. O. Peres and A.Y. Smirnov, Testing the solar neutrino conversion with atmospheric neutrinos, Phys. Lett. B 456 (1999) 204 [hep-ph/9902312] [INSPIRE].

    ADS  Google Scholar 

  91. M. Gonzalez-Garcia, M. Maltoni and A.Y. Smirnov, Measuring the deviation of the 2-3 lepton mixing from maximal with atmospheric neutrinos, Phys. Rev. D 70 (2004) 093005 [hep-ph/0408170] [INSPIRE].

    ADS  Google Scholar 

  92. E.K. Akhmedov, M. Maltoni and A.Y. Smirnov, Neutrino oscillograms of the Earth: effects of 1-2 mixing and CP-violation, JHEP 06 (2008) 072 [arXiv:0804.1466] [INSPIRE].

    Article  ADS  Google Scholar 

  93. J. Bernabeu, S. Palomares Ruiz and S. Petcov, Atmospheric neutrino oscillations, θ 13 and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].

    Article  ADS  Google Scholar 

  95. M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].

    ADS  Google Scholar 

  96. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Maltoni.

Additional information

ArXiv ePrint: 1209.3023

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J. et al. Global fit to three neutrino mixing: critical look at present precision. J. High Energ. Phys. 2012, 123 (2012). https://doi.org/10.1007/JHEP12(2012)123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)123

Keywords

Navigation