Skip to main content
Log in

On inflation with non-minimal coupling

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A simple realization of inflation consists of adding the following operators to the Einstein-Hilbert action: (∂ϕ)2, λϕ 4, and ξϕ 2 R , with ξ a large non-minimal coupling. Recently there has been much discussion as to whether such theories make sense quantum mechanically and if the inflaton ϕ can also be the Standard Model Higgs. In this work we answer these questions. Firstly, for a single scalar ϕ, we show that the quantum field theory is well behaved in the pure gravity and kinetic sectors, since the quantum generated corrections are small. However, the theory likely breaks down at ~m Pl /ξ due to scattering provided by the self-interacting potential λϕ 4. Secondly, we show that the theory changes for multiple scalars \( \overrightarrow \phi \) with non-minimal coupling \( \xi \overrightarrow \phi \cdot \overrightarrow \phi \mathcal{R} \), since this introduces qualitatively new interactions which manifestly generate large quantum corrections even in the gravity and kinetic sectors, spoiling the theory for energies ≳ m Pl . Since the Higgs doublet of the Standard Model includes the Higgs boson and 3 Goldstone bosons, it falls into the latter category and therefore its validity is manifestly spoiled. We show that these conclusions hold in both the Jordan and Einstein frames and describe an intuitive analogy in the form of the pion Lagrangian. We also examine the recent claim that curvature-squared inflation models fail quantum mechanically. Our work appears to go beyond the recent discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, The Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [SPIRES].

    ADS  Google Scholar 

  2. A.D. Linde, A New Inflationary Universe Scenario: a Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [SPIRES].

    Article  ADS  Google Scholar 

  4. A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. D. Baumann, A. Dymarsky, I.R. Klebanov, L. McAllister and P.J. Steinhardt, A Delicate Universe, Phys. Rev. Lett. 99 (2007) 141601 [arXiv:0705.3837] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40 (1989) 1753 [SPIRES].

    ADS  Google Scholar 

  7. R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [SPIRES].

    ADS  Google Scholar 

  8. D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [SPIRES].

    ADS  Google Scholar 

  10. K. Nozari and S.D. Sadatian, Non-Minimal Inflation after WMAP3, Mod. Phys. Lett. A 23 (2008) 2933 [arXiv:0710.0058] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  11. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [SPIRES].

    ADS  Google Scholar 

  12. A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [SPIRES].

    ADS  Google Scholar 

  13. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [SPIRES].

    ADS  Google Scholar 

  14. J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [SPIRES].

    ADS  Google Scholar 

  15. A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [SPIRES].

    ADS  Google Scholar 

  16. F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [SPIRES].

    ADS  Google Scholar 

  17. C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [SPIRES].

    Article  ADS  Google Scholar 

  18. J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [SPIRES].

    ADS  Google Scholar 

  19. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [SPIRES].

    Article  ADS  Google Scholar 

  20. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [SPIRES].

    ADS  Google Scholar 

  21. T.E. Clark, B. Liu, S.T. Love and T. ter Veldhuis, The Standard Model Higgs Boson-Inflaton and Dark Matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [SPIRES].

    ADS  Google Scholar 

  22. R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [SPIRES].

    ADS  Google Scholar 

  23. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group and naturalness in cosmology, arXiv:0910.1041 [SPIRES].

  24. D.G. Figueroa, Preheating the Universe from the Standard Model Higgs, AIP Conf. Proc. 1241 (2010) 578 [arXiv:0911.1465] [SPIRES].

    Article  ADS  Google Scholar 

  25. N. Okada, M.U. Rehman and Q. Shafi, Running Standard Model Inflation and Type I Seesaw, arXiv:0911.5073 [SPIRES].

  26. M.B. Einhorn and D.R.T. Jones, Inflation with Non-Minimal Gravitational Couplings in Supergravity, JHEP 03 (2010) 026 [arXiv:0912.2718] [SPIRES].

    Article  ADS  Google Scholar 

  27. R.N. Lerner and J. McDonald, Higgs Inflation and Naturalness, JCAP 04 (2010) 015 [arXiv:0912.5463] [SPIRES].

    ADS  Google Scholar 

  28. A. Mazumdar and J. Rocher, Particle physics models of inflation and curvaton scenarios, arXiv:1001.0993 [SPIRES].

  29. S.R. Huggins and D.J. Toms, One-graviton exchange interaction of non-minimally coupled scalar fields, Class. Quant. Grav. 4 (1987) 1509 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S.R. Huggins, Cross sections from tree-level gravitational scattering from a non-minimally coupled scalar field, Class. Quant. Grav. 4 (1987) 1515 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Coleman, Aspects of Symmetry, Selected Erice Lectures, Cambridge University Press, Cambridge U.K. (1985).

    MATH  Google Scholar 

  32. M. Atkins and X. Calmet, On the unitarity of linearized General Relativity coupled to matter, arXiv:1002.0003 [SPIRES].

  33. S. Weinberg, The Quantum Theory of Fields. Volume 2: Modern Applications, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  34. A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [SPIRES].

    ADS  Google Scholar 

  35. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Hertzberg.

Additional information

ArXiv ePrint: 1002.2995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertzberg, M.P. On inflation with non-minimal coupling. J. High Energ. Phys. 2010, 23 (2010). https://doi.org/10.1007/JHEP11(2010)023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)023

Keywords

Navigation