Skip to main content
Log in

Spread Supersymmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the multiverse the scale of supersymmetry breaking, \( \widetilde{m} = {F_X}/{M_{ * }} \) , may scan and environmental constraints on the dark matter density may exclude a large range of m from the reheating temperature after inflation down to values that yield a lightest supersymmetric particle (LSP) mass of order a TeV. After selection effects, for example from the cosmological constant, the distribution for \( \widetilde{m} \) in the region that gives a TeV LSP may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP somewhat lighter than the corresponding value for single-component LSP dark matter.

If supersymmetry breaking is mediated to the Standard Model sector at order X X and higher, only squarks, sleptons and one Higgs doublet acquire masses of order \( \widetilde{m} \). The gravitino mass is lighter by a factor of M /M Pl and the gaugino masses are suppressed by a further loop factor. This Spread Supersymmetry spectrum has two versions, one with Higgsino masses arising from supergravity effects of order the gravitino mass giving a wino LSP, and another with the Higgsino masses generated radiatively from gaugino masses giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 103 TeV and 106 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread Supersymmetry. The Higgs boson is Standard Model-like and predicted to lie in the range 110-145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is at least as precise as in minimal supersymmetric theories.

If supersymmetry breaking is also mediated at order X, a much less hierarchical spectrum results. The spectrum in this case is similar to that of the Minimal Supersymmetric Standard Model, but with the superpartner masses 1-2 orders of magnitude larger than those expected in natural theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].

  4. M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].

    Article  ADS  Google Scholar 

  5. V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].

    ADS  Google Scholar 

  6. T. Damour and J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding, Phys. Rev. D 78 (2008) 014014 [arXiv:0712.2968] [INSPIRE].

    ADS  Google Scholar 

  7. S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  8. H. Martel, P.R. Shapiro and S. Weinberg, Likely values of the cosmological constant, Astrophys. J. 492 (1998) 29 [astro-ph/9701099] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Garriga, M. Livio and A. Vilenkin, The cosmological constant and the time of its dominance, Phys. Rev. D 61 (2000) 023503 [astro-ph/9906210] [INSPIRE].

    ADS  Google Scholar 

  10. R. Bousso, R. Harnik, G.D. Kribs and G. Perez, Predicting the cosmological constant from the causal entropic principle, Phys. Rev. D 76 (2007) 043513 [hep-th/0702115] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D 78 (2008) 063520 [arXiv:0805.2173] [INSPIRE].

    ADS  Google Scholar 

  12. G. Larsen, Y. Nomura and H. Roberts, The cosmological constant in the quantum multiverse, Phys. Rev. D 84 (2011) 123512 [arXiv:1107.3556] [INSPIRE].

    ADS  Google Scholar 

  13. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L.J. Hall and Y. Nomura, a finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [INSPIRE].

    ADS  Google Scholar 

  16. F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [INSPIRE].

  17. M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].

    ADS  Google Scholar 

  18. G. Giudice and A. Masiero, A natural solution to the mu problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    ADS  Google Scholar 

  19. J. Casas and C. Muñoz, A natural solution to the mu problem, Phys. Lett. B 306 (1993) 288 [hep-ph/9302227] [INSPIRE].

    ADS  Google Scholar 

  20. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  21. L.J. Hall, Aspects of N = 1 supergravity models, in Supersymmetry and Supergravity /Nonperturbative QCD: Winter School, Mahabaleshwar India (1984), Lecture Notes in Physics. Vol. 208, P. Roy and V. Singh eds., Springer, Berlin Germany (1984), pp. 197.

  22. R. Hempfling, Can the supersymmetric μ parameter be generated dynamically without a light singlet?, Phys. Lett. B 329 (1994) 222 [hep-ph/9404257] [INSPIRE].

    ADS  Google Scholar 

  23. J.E. Kim and H.P. Nilles, Symmetry principles toward solutions of the μ problem, Mod. Phys. Lett. A 9 (1994) 3575 [hep-ph/9406296] [INSPIRE].

    ADS  Google Scholar 

  24. L.J. Hall, Y. Nomura and A. Pierce, R symmetry and the μ problem, Phys. Lett. B 538 (2002) 359 [hep-ph/0204062] [INSPIRE].

    ADS  Google Scholar 

  25. L.J. Hall and Y. Nomura, Evidence for the multiverse in the standard model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].

    ADS  Google Scholar 

  26. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P.Z. Skands, et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M.R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Tevatron Electroweak Working Group, CDF and D0 collaborations, M. Lancaster, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  32. S. Bethke, The 2009 World Average of αs, Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Hisano, Proton decay in the supersymmetric grand unified models, hep-ph/0004266 [INSPIRE].

  34. Super-Kamiokande collaboration, H. Nishino et al., Search for Proton Decay via pe +π0 and pμ +π0 in a Large Water Cherenkov Detector, Phys. Rev. Lett. 102 (2009) 141801 [arXiv:0903.0676] [INSPIRE].

    Article  Google Scholar 

  35. K. Abe et al., Letter of Intent: The Hyper-Kamiokande ExperimentDetector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].

  36. Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].

    Google Scholar 

  38. L.J. Hall and Y. Nomura, Grand unification in higher dimensions, Annals Phys. 306 (2003) 132 [hep-ph/0212134] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. Y. Nomura, Strongly coupled grand unification in higher dimensions, Phys. Rev. D 65 (2002) 085036 [hep-ph/0108170] [INSPIRE].

    ADS  Google Scholar 

  40. A. Hebecker and J. March-Russell, Proton decay signatures of orbifold GUTs, Phys. Lett. B 539 (2002) 119 [hep-ph/0204037] [INSPIRE].

    ADS  Google Scholar 

  41. L.J. Hall and Y. Nomura, A Complete theory of grand unification in five-dimensions, Phys. Rev. D 66 (2002) 075004 [hep-ph/0205067] [INSPIRE].

    ADS  Google Scholar 

  42. R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].

    ADS  Google Scholar 

  43. J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].

    ADS  Google Scholar 

  45. A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G. Vertongen and C. Weniger, Hunting Dark Matter Gamma-Ray Lines with the Fermi LAT, JCAP 05 (2011) 027 [arXiv:1101.2610] [INSPIRE].

    Article  ADS  Google Scholar 

  47. U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D. Roy, Looking for a heavy Higgsino LSP in collider and dark matter experiments, Phys. Lett. B 632 (2006) 114 [hep-ph/0508098] [INSPIRE].

    ADS  Google Scholar 

  48. J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].

  49. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  50. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

    ADS  Google Scholar 

  51. J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].

    ADS  Google Scholar 

  52. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

    ADS  Google Scholar 

  53. M. Ibe, T. Moroi and T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    ADS  Google Scholar 

  54. J.F. Gunion and S. Mrenna, Probing models with near degeneracy of the chargino and LSP at a linear e + e collider, Phys. Rev. D 64 (2001) 075002 [hep-ph/0103167] [INSPIRE].

    ADS  Google Scholar 

  55. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].

    ADS  Google Scholar 

  56. S. Bailly, K. Jedamzik and G. Moultaka, Gravitino Dark Matter and the Cosmic Lithium Abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].

    ADS  Google Scholar 

  57. G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura, Environmentally Selected WIMP Dark Matter with High-Scale Supersymmetry Breaking, Phys. Rev. D 81 (2010) 095003 [arXiv:0912.3942] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Hall.

Additional information

ArXiv ePrint: 1111.4519

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, L.J., Nomura, Y. Spread Supersymmetry. J. High Energ. Phys. 2012, 82 (2012). https://doi.org/10.1007/JHEP01(2012)082

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)082

Keywords

Navigation