Skip to main content
Log in

Nevirapine

  • New Drug Profile
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

  • ▲ Nevirapine is a potent noncompetitive inhibitor of the retroviral enzyme reverse transcriptase, which is necessary for HIV replication. The agent selectively inhibits HIV-1 but not HIV-2, and it is >8000-fold more selective for infected than uninfected cells.

  • ▲ Nevirapine shows synergistic inhibitory activity in vitro in combination with a number of nucleoside anti-HIV agents. Three- and 4-drug combinations that include nevirapine tend to have a higher synergy than 2-drug combinations or nevirapine alone.

  • ▲ High (‘knock out’) concentrations of nevirapine (2.5 to 10 mg/L) completely suppress viral replication in cell cultures, prevent emergence of resistant variants and protect uninfected cells.

  • ▲ Addition of nevirapine to existing anti-HIV therapy produces a rapid and sustained immunological and virological response; a concurrent rather than an alternating regimen produces a better response. Emergence of viral resistance to nevirapine is rapid (≤12 weeks) irrespective of whether this agent is used as monotherapy or combination therapy. However, viral resistance has been prevented or delayed with 3-drug combinations containing nevirapine in previously untreated compliant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Richman D, Rosenthal AS, Skoog M, et al. BI-RG-587 is active against zidovudine-resistant human immunodeficiency virus type 1 and synergistic with zidovudine. Antimicrob Agents Chemother 1991 Feb; 35(2): 305–8

    Article  PubMed  CAS  Google Scholar 

  2. Merluzzi VJ, Hargrave KD, Labadia M, et al. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 1990 Dec; 250(4986): 1411–3

    Article  PubMed  CAS  Google Scholar 

  3. Skoog MT, Hargrave KD, Miglietta JJ, et al. Inhibition of HIV-1 reverse transcriptase and virus replication by a non-nucleoside dipyridodiazepinone BI-RG-587 (Nevirapine). Med Res Rev 1992 Jan; 12(1): 27–40

    Article  PubMed  CAS  Google Scholar 

  4. Kohlstaedt LA, Wang J, Friedman JM, et al. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 1992 Jun; 256: 1783–90

    Article  PubMed  CAS  Google Scholar 

  5. Furfine ES, Reardon JE. Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNALys3-primer excision. Biochemistry 1991 Jul; 30(29): 7041–6

    Article  PubMed  CAS  Google Scholar 

  6. Palladino DEH, Hopkins JL, Ingraham RH, et al. High-performance liquid chromatography and photoaffinity cross-linking to explore the binding environment of nevirapine to reverse transcriptase of human immunodeficiency virus type-1. J Chromatogr A 1994 Jul; 676: 99–112

    Article  PubMed  CAS  Google Scholar 

  7. Condra JH, Emini EA, Gotlib L, et al. Identification of the human immunodeficiency virus reverse transcriptase residues that contribute to the activity of diverse nonnucleoside inhibitors. Antimicrob Agents Chemother 1992 Jul; 36(7): 1441–6

    Article  PubMed  CAS  Google Scholar 

  8. Wu JC, Warren TC, Adams J, et al. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a non-substrate binding site. Biochemistry 1991 Feb; 30(8): 2022–6

    Article  PubMed  CAS  Google Scholar 

  9. Spence RA, Kati WM, Anderson KS, et al. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 1995 Feb; 267: 988–93

    Article  PubMed  CAS  Google Scholar 

  10. Palaniappan C, Fay PJ, Bambara RA. Nevirapine alters the cleavage specificity of ribonuclease H of human immunodeficiency virus 1 reverse transcriptase. J Biol Chem 1995 Mar; 270(9): 4861–9

    Article  PubMed  CAS  Google Scholar 

  11. Tramontano E, Cheng Y-C. HIV-1 reverse transcriptase inhibition by a dipyridodiazepinone derivative: BI-RG-587. Biochem Pharmacol 1992 Mar; 43(6): 1371–6

    Article  PubMed  CAS  Google Scholar 

  12. Koup RA, Merluzzi VJ, Hargrave KD, et al. Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by the dipyridodiazepinone BI-RG-587. J Infect Dis 1991 May; 163: 966–70

    Article  PubMed  CAS  Google Scholar 

  13. Rusconi S, Merrill DP, Hirsch MS. Inhibition of human immunodeficiency virus type 1 replication in cytokine-stimulated monocytes/macrophages by combination therapy. J Infect Dis 1994 Dec; 170: 1361–6

    Article  PubMed  CAS  Google Scholar 

  14. Merrill DP, Moonis M, Chou T-C, et al. Lamivudine or stavudine in two- and three-drug combinations against human immunodeficiency virus type 1 replication in vitro. J Infect Dis 1996 Feb; 173: 355–64

    Article  PubMed  CAS  Google Scholar 

  15. Taylor DL, Brennan TM, Bridges CG, et al. Synergistic inhibition of human immunodeficiency virus type 1 in vitro by 6-O-butanoylcastanospermine (MDL28 574) in combination with inhibitors of the virus-encoded reverse transcriptase and proteinase. Antiviral Chem Chemother 1995 May; 6(3): 143–52

    CAS  Google Scholar 

  16. Connell EV, Hsu M-C, Richman DD. Combinative interactions of a human immunodeficiency virus (HIV) Tat antagonist with HIV reverse transcriptase inhibitors and an HIV protease inhibitor. Antimicrob Agents Chemother 1994 Feb; 38(2): 348–52

    Article  PubMed  CAS  Google Scholar 

  17. Brennan TM, Taylor DL, Bridges CG, et al. The inhibition of human immunodeficiency virus type 1 in vitro by a non-nucleoside reverse transcriptase inhibitor MKC-442, alone and in combination with other anti-HIV compounds. Antiviral Res 1995 Mar; 26: 173–87

    Article  PubMed  CAS  Google Scholar 

  18. Mazzulli T, Rusconi S, Merrill DP, et al. Alternating versus continuous drug regimens in combination chemotherapy of human immunodeficiency virus type 1 infection in vitro. Anti-microb Agents Chemother 1994 Apr; 38(4): 656–61

    Article  CAS  Google Scholar 

  19. Oh M-D, Merrill D, Hirsch M, et al. Simultaneous vs sequential combination regimens for the treatment of HIV-1 infection in vitro [abstract no. B.3135]. Proceedings of the 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, Canada, 79u

  20. Koup RA, Brewster F, Grob P, et al. Nevirapine synergistically inhibits HIV-1 replication in combination with zidovudine, interferon or CD4 immunoadhesin. AIDS 1993 Sep; 7(9): 1181–4

    Article  PubMed  CAS  Google Scholar 

  21. Richman D, Shih C-K, Lowy I, et al. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc Natl Acad Sci USA 1991 Dec; 88: 11241–5

    Article  PubMed  CAS  Google Scholar 

  22. Nunberg JH, Schleif WA, Boots EJ, et al. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J Virol 1991 Sep; 65(9): 4887–92

    PubMed  CAS  Google Scholar 

  23. Sardana VV, Emini EA, Gotlib L, et al. Functional analysis of HIV-1 reverse transcriptase amino acids involved in resistance to multiple nonnucleoside inhibitors. J Biol Chem 1992 Sep; 267(25): 17526–30

    PubMed  CAS  Google Scholar 

  24. De Clercq E. HIV resistance to reverse transcriptase inhibitors. Biochem Pharmacol 1994 Jan; 47(2): 155–69

    Article  PubMed  Google Scholar 

  25. Mellors JW, Larder BA, Schinazi RF. Mutations in HIV-1 reverse transcriptase and protease associated with drug resistance. Int Antiviral News 1995; 3(1): 8–13

    Google Scholar 

  26. Shih C-K, Rose JM, Hansen GL, et al. Chimeric human immunodeficiency virus type 1/type 2 reverse transcriptases display reversed sensitivity to nonnucleoside analog inhibitors. Proc Natl Acad Sci USA 1991 Nov; 88: 9878–82

    Article  PubMed  CAS  Google Scholar 

  27. Byrnes VW, Emini EA, Schleif WA, et al. Susceptibilities of human immunodeficiency virus type 1 enzyme and viral variants expressing multiple resistance-engendering amino acid substitutions to reverse transcriptase inhibitors. Antimicrob Agents Chemother 1994 Jun; 38(6): 1404–7

    Article  PubMed  CAS  Google Scholar 

  28. Emini EA, Graham DJ, Gotlib L, et al. HIV and multidrug resistance [letter]. Nature 1993 Aug; 364: 679

    Article  PubMed  CAS  Google Scholar 

  29. Larder BA, Kellam P, Kemp SD. Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro [letter]. Nature 1993 Sep; 365: 451–3

    Article  PubMed  CAS  Google Scholar 

  30. Balzarini J, Karlsson A, Pérez-Pérez M-J, et al. Treatment of human immunodeficiency virus type-1 (HIV-l)-infected cells with combinations of HIV-1-specific inhibitors results in a different resistance pattern than does treatment with single-drug therapy. J Virol 1993 Sep; 67(9): 5353–9

    PubMed  CAS  Google Scholar 

  31. Balzarini J, Karlsson A, Pérez-Pérez M-J, et al. Knocking-out concentrations of HIV-1-specific inhibitors completely suppress HIV-1 infection and prevent the emergence of drug-resistant virus. Virology 1993 Oct; 196: 576–85

    Article  PubMed  CAS  Google Scholar 

  32. Cheeseman SH, Hattox SE, McLaughlin MM, et al. Pharmacokinetics of nevirapine: initial single-rising-dose study in humans. Antimicrob Agents Chemother 1993 Feb; 37(2): 178–82

    Article  PubMed  CAS  Google Scholar 

  33. Havlir D, Cheeseman SH, McLaughlin M, et al. High-dose nevirapine: safety, pharmacokinetics, and antiviral effect in patients with human immunodeficiency virus infection. J Infect Dis 1995 Mar; 171: 537–45

    Article  PubMed  CAS  Google Scholar 

  34. Mirochnick M, Sullivan J, Cort S, et al. Safety and pharmacokinetics (PK) or nevirapine (NVP) in HIV-1 infected pregnant women and their newborns [abstract no. 444]. Pediatr Res 1996 Apr; 39(2): 76A

    Google Scholar 

  35. Riska P, Erickson D, Joseph D, et al. Nevirapine, a nonnucleoside reverse transcriptase inhibitor: metabolism in man, mouse, rat, dog, cynomolgus monkey and chimpanzee [abstract no. B.2326]. Proceedings of the 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, Canada, 321

  36. De Jong M. Antiviral response to nevirapine monotherapy in nucleoside naive persons [abstract no. PB0847]. Proceedings of the 10th International Conference on AIDS; 1994 Aug 7–12; Yokohama, Japan, 208.

  37. Cheeseman SH, Havlir D, McLaughlin MM, et al. Phase I/II evaluation of nevirapine alone and in combination with zidovudine for infection with human immunodeficiency virus. J Acquir Immune Defic Syndrom Hum Retrovirol 1995 Feb; 8(2): 141–51

    CAS  Google Scholar 

  38. de Jong MD, Loewenthal M, Boucher CAB, et al. Alternating nevirapine and zidovudine treatment of human immunodeficiency virus type 1-infected persons does not prolong nevirapine activity. J Infect Dis 1994 Jun; 169: 1346–50

    Article  PubMed  Google Scholar 

  39. Loewenthal M, Hall D, de Jong MD, et al. Treatment with nevirapine and zidovudine in antiretroviral naive HIV-1 infected patients [abstract no. PO-B26-2101]. Proceedings of the 9th International Conference on AIDS; 1993 Jun 6–11; Berlin, Germany, 485

  40. Carr A, Vella S, De Jong MD, et al. A controlled trial of nevirapine plus zidovudine versus zidovudine alone in p24 antigenaemic HIV-infected patients. AIDS 1996; 10: 635–41

    Article  PubMed  CAS  Google Scholar 

  41. Paar D, Pollard R, Hall D, et al. Nevirapine (NVP) in combination with zidovudine (ZDV) vs ZDV in nucleoside experienced patients [abstract no. 383]. Clin Infect Dis 1995 Sep; 21(3): 783

    Google Scholar 

  42. Saag M, Johnson V, Wei X, et al. Clinical, pharmacokinetic, and virologie results in adults treated with nevirapine (Nev) in combination with AZT/ddC, AZT/ddI, or ddl alone: final report of the BI1009 study [abstract no. M16]. Proceedings of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1994 Oct 4–7; Orlando, Florida, 218

  43. D’Aquila RT, Hughes MD, Johnson VA, et al. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. Ann Intern Med 1996 Jun; 124(12): 1019–30

    PubMed  Google Scholar 

  44. Study BI 1046: interim (28-week) results. Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT. Data on file

  45. Richman DD, Havlir D, Corbeil J, et al. Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J Virol 1994 Mar; 68(3): 1660–6

    PubMed  CAS  Google Scholar 

  46. Havlir D, McLaughlin MM, Richman DD. A pilot study to evaluate the development of resistance to nevirapine in asymptomatic human immunodeficiency virus-infected patients with CD4 cell counts of >500/mm3: AIDS Clinical Trials Group Protocol 208. J Infect Dis 1995 Nov; 172: 1379–83

    Article  PubMed  CAS  Google Scholar 

  47. Mueller BU, Sci S, Luzuriaga K, et al. The impact of combination therapy (zidovudine + didanosine + nevirapine) on HIV-1 virus burden in peripheral blood and lymph node tissue in children [abstract]. J Invest Med 1995 Apr; 43(2) Suppl. 2: 249A

    Google Scholar 

  48. Wei X, Johnson V, Taylor M, et al. Rapid HIV-1 turnover in patients receiving combination nevirapine (Nev) therapy [abstract no. 164]. Proceedings of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1994 Oct 4–7; Orlando, Florida, 61

  49. Luzuriaga K, Sullivan JL. Pharmacokinetics, safety and activity of nevirapine in HIV-1 infected children [lecture]. Non-nucleoside reverse transcriptase inhibitors: a new class of antiretrovirais; 1996 Jul 9; Vancouver, Canada

  50. Myers MW, Montaner JG, The Incas Study Group. A randomized, double-blinded comparative trial of the effects of zidovudine, didanosine and nevirapine combinations in antiviral naive, AIDS-free, HIV-infected patients with CD4 counts 200–600/mm3 [abstract no. B.294]. Proceedings of the 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, Canada, 22

  51. Tomino C, Fragola V, Bucciardini R, et al. Tolerability of AZT+DDI and AZT+DDI+nevirapine among antiretroviral — naive patients with advanced HIV infection (AIDS or CD4+<200/mm3): preliminary results [abstract no. B.2119]. Proceedings of the 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, Canada, 285

  52. Burchett SK, Luzuriaga K, Culnane M, et al. Early toxicity experience in combination therapy of advanced pediatric HIV disease [abstract no. 1264]. Proceedings of the 35th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco, California, 253

  53. Cheeseman SH, Murphy RL, Saag MS, et al. Safety of high dose nevirapine (NVP) after 200 mg/d lead-in [abstract no. PO-B26-2109]. Proceedings of the 9th International Conference on AIDS; 1993 Jun 6–11; Berlin, Germany, 487

  54. Kohlbrenner V, Dransfield K, Cotton D, et al. Cutaneous eruptions associated with nevirapine (NVP) therapy in HIV-1 infected individuals [abstract no. B.1202]. Proceedings of the 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, Canada, 89

  55. Grob PM, Wu JC, Cohen KA, et al. Nonnucleoside inhibitors of HIV-1 reverse transcriptase: nevirapine as a prototype drug. AIDS Res Hum Retroviruses 1992 Feb; 8(2): 145–52

    Article  PubMed  CAS  Google Scholar 

  56. Weinberg RS, Chusid ED, Galperin Y, et al. Nevirapine (Nev) is less toxic to progenitor cells (BFU-E) than AZT or ddI [abstract no. PB0813]. Proceedings of the 10th International Conference on AIDS; 1994 Aug 7–12; Yokohama, Japan, 200

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.S., Benfield, P. Nevirapine. Clin. Immunother. 6, 307–317 (1996). https://doi.org/10.1007/BF03259093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259093

Keywords

Navigation