Skip to main content
Log in

The Fermi-Dirac integrals\(\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon \)

  • Published:
Applied Scientific Research, Section B

Summary

Following a discussion of the relationship of the Fermi-Dirac integrals to other functions, complete expansions are developed which enable the integrals of all orders to be calculated without recourse to numerical integration. In order to supplement existing tables, values are given for orders—1 and 0 for positive and negative arguments, and for orders 1, 2, 3, 4 for positive arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beer, A. C., M. N. Chase and P. F. Choquard, Helv. Phys. Acta28 (1955) 529.

    MATH  MathSciNet  Google Scholar 

  2. Clunie, J., Proc. Phys. Soc.A 67 (1954) 632.

    ADS  MathSciNet  Google Scholar 

  3. Davis, H. T., Tables of the Higher Mathematical Functions, Vol. 2, Principia Press, Bloomington, Indiana, 1935, p. 247.

    MATH  Google Scholar 

  4. Dawson, H. G., Proc. Lond. Math. Soc.29 (1897) 519. St äblein, F. and R. Schläfer, Z. angew. Math. Mech.23 (1943) 59. Terrill, H. M. and L. Sweeny, J. Franklin Inst.237(1944) 499,238 (1944) 220. Rosser, J. B., Theory and Application of\(\int\limits_0^z {e^{ - x^2 } dx and } \int\limits_0^z {e^{ - p2y2} } dy\int\limits_0^y {e^{ - x2} } dx,\) Mapleton House, Brooklyn, N.Y., 1948.

    Article  Google Scholar 

  5. Dingle, R. B., Appl. Sci. Res.B4 (1955) 401.

    Article  MathSciNet  Google Scholar 

  6. Dingle, R. B., D. Arndt, and S. K. Roy, Appl. Sci. Res.B 6 (1957) 144.

    Article  Google Scholar 

  7. Gilham, C. W., Proc. Leeds Phil. Soc.3 (1936) 117.

    Google Scholar 

  8. Hurwitz, A., Z. Math. Phys.27 (1882) 86; E. Lerch, Acta Math.11 (1887) 19; Jonquière, Bull. Soc. Math. de France17 (1889) 142.

    Google Scholar 

  9. Jahnke, E. and F. Emde, Tables of Functions, Dover, New York, 1945.

    MATH  Google Scholar 

  10. McDougall, J. and E. C. Stoner, Phil. Trans. Roy. Soc.A 237 (1938) 67.

    Article  ADS  Google Scholar 

  11. Nordheim, L., Müller Pouillets Lehrbuch der Physik,4, iv, 277, Braunschweig, 1934.

    Google Scholar 

  12. Placzek, G., The FunctionsE n (x),MT— 1, National Research Council of Canada, Division of Atomic Energy, 1946. (Reprinted in Applied Math. Series no.37, pp. 57-111, U.S. Gov. Printing Office, 1954).

  13. Rhodes, P., Proc. Roy. Soc.A 204 (1950) 396.

    ADS  MathSciNet  Google Scholar 

  14. Sommerfeld, A., Z. Phys.47 (1928) 1.

    Article  ADS  Google Scholar 

  15. Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937; G. Doetsch, Theorie und Anwendung der Laplace Transformation, Berlin, 1937; R. B. Dingle, Appl. Sci. Res.B 4 (1955) 401.

    MATH  Google Scholar 

  16. Whittaker, E. T., and G. N. Watson, A Course of Modern Analysis, 4th edition, Cambridge University Press, 1927.

  17. Wilson, A. H., The Theory of Metals, 2nd edition, Cambridge University Press, 1953.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was commenced in 1954 while the author held a Post-Doctorate Fellowship at the National Research Council, Ottawa. The later work was supported by the Research Grants Committee of the University of Western Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingle, R.B. The Fermi-Dirac integrals\(\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon \) . Appl. Sci. Res. 6, 225–239 (1957). https://doi.org/10.1007/BF02920379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920379

Keywords

Navigation