Skip to main content
Log in

The origin and relationships of the pepino,Solanum muricatum (solanaceae): DNA restriction fragment evidence

El Origen y Relaciones del Pepino, Solanum muricatum (Solanaceae)

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

The pepino (or pepino dulce:Solanum muricatum) is a domesticate, of interest because of its close relationship to tomatoes and potatoes, because it is enjoying increasing exposure in the international market, and because it is a cultigen with no known wild ancestor. Morphologically this South American native is a member of the Solanum sect. Basarthrum, and as such, is allied to a number of Andean wild species. Data from other studies are combined with results from restriction site analysis of chloroplast and nuclear ribosomal DNA to assay relationships and the potential origin of the pepino. The pepino may have existed in the wild previously and may be represented today only by the cultigen. However, if its ancestors are extant, three wild species—Solanum basendopogon (Perú),S. caripense (Costa Rica through Perú), S. tabanoense (Colombia and Ecuador)—emerge as most likely progenitors. Phylogenetic analyses of 61 accessions, including 27 of the pepino, dependent on chloroplast DNA (cpDNA) and nuclear ribosomal (rDNA) restriction site data show the pepino to be polymorphic, suggest independent origins for some of the cultivars, and most strongly supportS. tabanoense as the progenitor of the cultigen.Solanum caripense also may have been a direct ancestor of the pepino, or may have hybridized subsequent to its origin with the pepino to yield some of the haplotype variation. Similarly, S.cochoae may have hybridized with the pepino. There are no DNA characters supporting the involvement ofS. basendopogon in the origin.

Resumen

Análisis de Sitios de Restricción en el Adn.El ‘pepino’ (o ‘pepino dulce’:Solanum muricatum) es una planta domesticada de gran interés por estar estrechamente emparentada con los tomates y papas, porque su dispersión en el mercado internacional está incrementando y porque es un cultigen con ancestro silvestre desconocido. Morfológicamente esta planta natural de Sudamérica es un meimbro del géneroSolanum sect.Basarthrum, y como tal, está ligada a varias especies silvestres de la región andina. Datos provenientes de estudios previos son combinados aquí con los resultados del análisis de sitios de restricción en el ADN ribosómico nuclear y plastidial para investigar el parentesco y el origen potencial del pepino. Este último pudo haber existido previamente en estado silvestre y hoy en día estar probablemente representado sólo por el cultigen. Sin embargo, si sus ancestros están extintos, tres expecies silvestres—Solanum basendopogon (Perú),S. caripense (de Costa Rica hasta Perú),S. tabanoense (Colombia y Ecuador) –aparecen como los progenitores más probables. Análisis filogenéticos de 61 ancestros incluyendo 27 del pepino, localizados en los sitios de restricción del ADN plastidial (cpDNA) y ADN ribosómico (rDNA), muestran que el pepino es polimórfico, sugiriendo al mismo tiempo orígenes independientes para algunos de los cultivares, y sustentan fuertemente aS. tabanoense como progenitor del cultigen. Solanum caripense también pudo haber sido ancestro directo del pepino, o podría haberse hibridizado después de su origen con algunas de las accesiones del pepino para eliminar así algo de la variación haplotípica. De la misma manera,S. cochoae pudo haberse hibridizado con el pepino. No existen caracteres del ADN que sugieran la implicación de S. basendopogon en el origen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Albert, V. A., B. D. Mishler, and M. W. Chase. 1992. Character-state weighting for restriction site data in phylogenetic reconstruction, with an example from chloroplast DNA. Pages 369–403in P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds., Molecular systematics in plants. Chapman and Hall, New York.

    Google Scholar 

  • Anderson, E. 1952. Plants, Man and Life. Little, Brown and Co., Boston.

    Google Scholar 

  • Anderson, G. J. 1975. The variation and evolution of selected species ofSolanum, sectionBasar thrum. Brittonia 27(3):209–222.

    Article  Google Scholar 

  • — 1979. Systematic and evolutionary consideration of species ofSolanum sectionBasarthrum. II. Pages 549–562in J. G. Hawkes, R. N. Lester, and A. D. Skelding, eds., The biology and taxonomy of the Solanaceae. Academic Press, New York.

    Google Scholar 

  • —,and L. M. Bernardello. 1991. The relationships ofSolanum cochoae, a new species from Perú. Novon 1(3):127–133.

    Article  Google Scholar 

  • -,and R. K. Jansen, n.d. The Solanaceae: Biosystematics and Molecular Systematic Studies ofSolanum, section Basarthrum and the Origin and Relationships of the Pepino (Solanum muricatum). Annals of the Missouri Botanical Garden.

  • Blumler, M. A. 1992. Independent inventionism and recent genetic evidence on plant domestication. Economic Botany 46(1):98–111.

    Google Scholar 

  • Bremer, K. 1992. Ancestral areas: a cladistic reinterpretation of the center of origin concept. Systematic Biology 41(4):436–445.

    Article  Google Scholar 

  • Correll, D. S. 1962. The potato and its wild relatives. Texas Research Foundation, Renner, TX.

    Google Scholar 

  • DeBry, R. W., and N. A. Slade. 1985. Cladistic analysis of restriction endonuclease cleavage maps within a maximum likelihood framework. Systematic Zoology 34:21–34.

    Article  Google Scholar 

  • Doebley, J. 1995. Genetics, Development, and the Morphological Evolution of Maize. Pages 57–70in P. C. Hoch and A. G. Stephenson, eds., Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St. Louis.

    Google Scholar 

  • Donoghue, M. J., and M. J. Sanderson. 1991. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. Pages 340–368in P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds., Molecular systematics of plants, Chapman and Hall, New York.

    Google Scholar 

  • Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15.

    Google Scholar 

  • —, —,and H. D. Brown. 1990. A chloroplast DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44:371–389.

    Article  CAS  Google Scholar 

  • Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19:83–92.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  • Harlan, J. R. 1971. Agricultural origins: centers and noncenters. Science (Washington, D.C.) 174:468–474.

    Article  Google Scholar 

  • — 1992. Crops and Man. 2nd. ed. American Society of Agronomy, Inc. Crop Science Society of America Inc., Madison.

    Google Scholar 

  • —,and J. M. J. De Wet. 1963. The Compilospecies concept. Evolution 17:497–501.

    Article  Google Scholar 

  • Heiser, C. B. 1964. Origin and variability of the Pepino (Solanum muricatum): a preliminary report. Baileya 12:151–158.

    Google Scholar 

  • — 1969.Solarium caripense y el origen deSolanum muricatum. Revista Politécnica (Quito, Ec.) 1(3): 1–7.

    Google Scholar 

  • — 1985. Of Plants and People. University of Oklahoma Press, Norman.

    Google Scholar 

  • Holsinger, K. E., and R. K. Jansen. 1993. Phylogenetic Analysis of Restriction Site Data. Pages 439–455in A. J. Zimmer, T. J. White, R. L. Cann, and A. C. Wilson, eds., Methods of enzymology. Academic Press, San Diego.

    Google Scholar 

  • Hong, Y. P., V. D. Hipkins, and S. H. Strauss. 1993. Chloroplast DNA diversity among trees, populations, and species in the California closed-cone pines (Pinus radiata, Pinus muricata, andPinus attenuata). Genetics 135:1187–1196.

    PubMed  CAS  Google Scholar 

  • Jansen, R. K., R. S. Wallace, K.-J. Kim, and K. L. Chambers. 1991. Systematic implications of chloroplast DNA variation in the subtribe Microseridinae (Asteraceae: Lactuceae). American Journal of Botany 78:1015–1027.

    Article  Google Scholar 

  • Kellogg, E. A., R. Mason, R. Appels, and C. Hsaio. 1994. When molecules and molecules clash. II. How do we reconcile four incongruent data sets? American Journal of Botany 81(6):164.

    Google Scholar 

  • Kim, K.-J., R. K. Jansen, and B. L. Turner. 1992. Evolutionary implications of intraspecific chloroplast DNA variation in dwarf dandelions (Krigia: Asteraceae). American Journal of Botany 79:708–715.

    Article  Google Scholar 

  • Maddison, D. R. 1991. Discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology 40:315–328.

    Article  Google Scholar 

  • Markham, Clements R., ed. and trans. 1864. The Travels of Pedro de Cieza de León. Printed for the Haykluyt Society, London. Translation of a work first published, as Cronica del Peru, by Pedro de Cieza de León, in 1553.

  • Mason, R. J., E. A. Kellogg, R. Appels, and C. Hsiao. 1994. When molecules and molecules clash. I. Four incongruent data sets. American Journal of Botany 81(6): 171.

    Google Scholar 

  • Mason-Gamer, R. J., K. E. Holsinger, and R. K. Jansen. 1995. Chloroplast DNA haplotype variation within and among populations ofCoreopsis grandiflora. Molecular Biology and Evolution 12: 371–381.

    CAS  Google Scholar 

  • Munsell, H. E., L. O. Williams, L. P. Guild, C. B. Troescher, G. Nightingale, and R. S. Harris. 1950a. Composition of food plants of Central America. II. Guatemala. Food Research 15:16–33.

    PubMed  CAS  Google Scholar 

  • —, —, —, —, —,and —. 1950b. Composition of food plants of Central America. IV. El Salvador. Food Research 15:263–296.

    PubMed  CAS  Google Scholar 

  • —, —, —,L. T. Kelley, A. M. McNally, andR. S. Harris. 1950c. Composition of food plants of Central America. VIII. Guatemala. Food Research 15:439–453.

    PubMed  CAS  Google Scholar 

  • —,R. Castillo, D. Zurita, andJ. M. Portilla. 1953. Production, uses, and composition of foods of plant origin from Ecuador. Food Research 18: 319–342.

    CAS  Google Scholar 

  • NAS/NRC (National Academy of Sciences/National Research Council). 1989. Pepino. Pages 297–305in Lost crops of the Incas: Little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington, DC.

  • Olmstead, R. G., andJ. D. Palmer. 1992. A chloroplast DNA phytogeny of the Solanaceae: subfamilial relationships and character evolution. Annals of the Missouri Botanical Garden. 79:346–360.

    Article  Google Scholar 

  • Palmer, J. D. 1986. Isolation and structural analysis of chloroplast DNA. Methods in Enzymology 118: 167–186.

    Article  CAS  Google Scholar 

  • Rieseberg, L. H., and D. E. Soltis. 1991. Phylogenetic consequences of cytoplasmic flow in plants. Evolutionary Trends in Plants 5(l):65–84.

    Google Scholar 

  • Schilling, E. E., and R. K. Jansen. 1989. Restriction fragment analysis of chloroplast DNA and the systematics ofViguiera and related genera (Asteraceae: Heliantheae) American Journal of Botany 76: 1769–1778.

    Article  CAS  Google Scholar 

  • Soltis, D. E., P. S. Soltis, T. A. Ranker, and B. D. Ness. 1989. Chloroplast DNA variation in a wild plant,Tolmiea menziesii. Genetics 121:819–826.

    PubMed  CAS  Google Scholar 

  • Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony, version 3.1. Illinois Natural History Survey, Champaign.

  • Sytsma, K. J. 1990. DNA and morphology: inference of plant phytogeny. Tree 5:104–110.

    Google Scholar 

  • Towle, M. A. 1961. The ethnobotany of Pre-Columbian Peru. Wenner-Gren Foundation for Anthropological Research, Inc., New York.

    Google Scholar 

  • Watt, B. K., and A. L. Merrill. 1963. Composition of Food Plants. Agriculture Handbook #8. USDA/ARS. Govt. Printing office, Washington, D.C.

    Google Scholar 

  • Whittemore, A. T., and B. A. Schaal. 1991. Interspecific gene flow in sympatric oaks. Proceedings of the National Academy of Sciences USA 84: 9054–9058.

    Google Scholar 

  • Yamaguchi, M. 1983. World vegetables: principles, production and nutritive values. AVI Publishing Co. Inc., Westport, CT.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Charles Heiser in honor of contributions throughout his career to the understanding of the evolution of domesticates and in thanks for his sage advice to GJA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.J., Jansen, R.K. & Kim, Y. The origin and relationships of the pepino,Solanum muricatum (solanaceae): DNA restriction fragment evidence. Econ Bot 50, 369–380 (1996). https://doi.org/10.1007/BF02866519

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02866519

Key Words

Navigation