Skip to main content
Log in

Drug discovery from natural sources

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Organic compounds from terrestrial and marine organisms have extensive past and present use in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modification. Over 20 new drugs launched on the market between 2000 and 2005, originating from terrestrial plants, terrestrial microorganisms, marine organisms, and terrestrial vertebrates and invertebrates, are described. These approved substances, representative of very wide chemical diversity, together with several other natural products or their analogs undergoing clinical trials, continue to demonstrate the importance of compounds from natural sources in modern drug discovery efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery.Nat Prod Rep. 2000;17:215–234.

    Article  PubMed  CAS  Google Scholar 

  2. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002.J Nat Prod. 2003;66:1022–1037.

    Article  PubMed  CAS  Google Scholar 

  3. Koehn FE, Carter GT. The evolving role of natural products in drug discovery.Nat Rev Drug Discov. 2005;4:206–220.

    Article  PubMed  CAS  Google Scholar 

  4. Paterson I, Anderson EA. The renaissance of natural products as drug candidates.Science. 2005;310:451–453.

    Article  PubMed  Google Scholar 

  5. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants.Life Sci. 2005;78:431–441.

    Article  PubMed  CAS  Google Scholar 

  6. Jones WP, Chin Y-W, Kinghorn AD. The role of pharmacognosy in modern medicine and pharmacy.Curr Drug Targets. 2006;7:247–264.

    Article  PubMed  CAS  Google Scholar 

  7. Drahl C, Cravatt BF, Sorensen EJ. Protein-reactive natural products.Angew Chem Int Ed Engl. 2005;44:5788–5809.

    Article  PubMed  CAS  Google Scholar 

  8. Grifo F, Newman D, Fairfield A, Bhattacharya B, Grupenhoff J. The origins of prescription drugs. In: Grifo F, Rosenthal J, eds.Biodiversity and Human Health. Washington, DC: Island Press; 1997;131–163.

    Google Scholar 

  9. Butler MS. The role of natural product chemistry in drug discovery.J Nat Prod. 2004;67:2141–2153.

    Article  PubMed  CAS  Google Scholar 

  10. Thayer A. Bristol-Myers to settle suits.Chem Eng News. 2003;81:6.

    Google Scholar 

  11. Oberlies NH, Kroll DJ. Camptothecin and taxol: historic achievements in natural products research.J Nat Prod. 2004;67:129–135.

    Article  PubMed  CAS  Google Scholar 

  12. Butler MS. Natural products to drugs: natural products derived compounds in clinical trials.Nat Prod Rep. 2005;22:162–195.

    Article  PubMed  Google Scholar 

  13. Dewick PM.Medicinal Natural Products: A Biosynthetic Approach. 2nd ed. Chichester, UK. John Wiley & Sons; 2002.

    Google Scholar 

  14. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery.Environ Health Perspect. 2001;109:69–75.

    Article  PubMed  CAS  Google Scholar 

  15. Kinghorn AD. The discovery of drugs from higher plants. In: Gullo VP, ed.The Discovery of Natural Products with Therapeutic Potential. Boston, MA: Butterworth-Heinemann; 1994;81–108.

    Google Scholar 

  16. Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: an evidence-based review of its use in Parkinson's disease.Drugs Aging. 2004;21:687–709.

    Article  PubMed  CAS  Google Scholar 

  17. Koumis T, Samuel S. Tiotropium bromide: a new long-acting bronchodilator for the treatment of chronic obstructive pulmonary disease.Clin Ther. 2005;27:377–392.

    Article  PubMed  CAS  Google Scholar 

  18. Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B. Pharmacokinetics and pharmacodynamics of NTBC [2-(2-nitro-4-fluoromethyl-benzoyl)-1,3-cyclohexanedione] and mesotrion, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers.Br J Clin Pharmacol. 2001;52:169–177.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell G, Bartlett DW, Fraser TEM, et al. Mesotrione: a new selective herbicide for use in maize.Pest Manag Sci. 2001;57:120–128.

    Article  PubMed  CAS  Google Scholar 

  20. Howes M-JR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders.Phytother Res. 2003;17:1–18.

    Article  PubMed  CAS  Google Scholar 

  21. Heinrich M, Teoh HL. Galanthamine from snowdrop—the development of a modern drug against Alzheimer's disease from local Caucasian knowledge.J Ethnopharmacol. 2004;92:147–162.

    Article  PubMed  CAS  Google Scholar 

  22. van Agtmael MA, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication.Trends Pharmacol Sci. 1999;20:199–205.

    Article  PubMed  Google Scholar 

  23. Cirla A, Mann J. Combrestatins: from natural products to drug discovery.Nat Prod Rep. 2003;20:558–564.

    Article  PubMed  CAS  Google Scholar 

  24. Pinney KG, Jelinek C, Edvardsen K, Chaplin DJ, Pettit GR. The discovery and development of the combrestatins. In: Cragg GM, Kingston DGI, Newman DJ, eds.Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005;23–46.

    Google Scholar 

  25. West CML, Price P. Combrestatin A4 phosphate.Anticancer Drugs. 2004;15:179–187.

    Article  PubMed  CAS  Google Scholar 

  26. Young SL, Chaplin DJ. Combrestatin A4 phosphate: background and current clinical status.Expert Opin Investig Drugs. 2004;13:1171–1182.

    Article  PubMed  CAS  Google Scholar 

  27. Powell RG, Weisleder D, Smith CR, Rohwedder WK. Structures of harringtonine, isoharringtomine, and homoharringtonine.Tetrahedron Lett. 1970;11:815–818.

    Article  PubMed  CAS  Google Scholar 

  28. Kantarjian Hm, Talpaz M, Santini V, Murgo A, Cheson B, O'Brian SM. Homoharringtonine: history, current research, and future direction.Cancer. 2001;92:1591–1603.

    Article  PubMed  CAS  Google Scholar 

  29. Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase.C. Cancer Res. 2004;64:3243–3255.

    CAS  Google Scholar 

  30. Ogbourne SM, Suhrbier A, Jones B, et al. Antitumor activity of ingenol 3-angelate: plasma membrane and mitochondrial disruption and necrotic cell death.Cancer Res. 2004;64:2833–2839.

    Article  PubMed  CAS  Google Scholar 

  31. Kamsteeg M, Rutherford T, Sapi E, et al. Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresitant ovarian cancer cells.Oncogene. 2003;22:2611–2620.

    Article  PubMed  CAS  Google Scholar 

  32. Constantinou AI, Mehta R, Husband A. Phenoxodiol, a novel isoflavone derivative, inhibits dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats.Eur J Cancer. 2003;39:1012–1018.

    Article  PubMed  CAS  Google Scholar 

  33. Shibata S, Tanaka O, Sado M, Tsushima S. The genuine sapogenin of ginseng.Tetrahedron Lett. 1963;4:795–800.

    Article  Google Scholar 

  34. Jia W, Yan H, Bu X, Liu G, Zhao Y. Aglycone protopanaxadiol, a ginseng saponin, inhibits P-glycoprotein and sensitizes chemotherapy drugs on multidrug resistant cancer cells.J Clin Oncol. 2004;22:9663.

    Google Scholar 

  35. Kiviharju TM, Lecane PS, Sellers RG, Peehl DM. Antiproliferative and proapoptotic of triptolide (PG490), and natural product entering clinical trials, on primary cultures of human prostatic epithelial cells.Clin Cancer Res. 2002;8:2666–2674.

    PubMed  CAS  Google Scholar 

  36. Fidler JM, Li K, Chung C, et al. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy.Mol Cancer Ther. 2003;2:855–862.

    PubMed  CAS  Google Scholar 

  37. Sneader W.Drug Discovery: A History. Hoboken, NJ: John Wiley & Sons; 2005.

    Google Scholar 

  38. Jarvis B, Figgitt DP, Scott LJ. Micafungin.Drugs. 2004;64:969–982.

    Article  PubMed  CAS  Google Scholar 

  39. Frattarelli DAC, Reed MD, Giacoia GP, Aranda JV. Antifungals in systemic neonatal candidiasis.Drugs. 2004;64:949–968.

    Article  PubMed  CAS  Google Scholar 

  40. Zhanel GG, Homenuik K, Nichol K, et al. The glycylcyclines: a comparative review with the tetracyclines.Drugs. 2004;64:63–88.

    Article  PubMed  CAS  Google Scholar 

  41. Chapman TM, Perry CM. Everolimus.Drugs. 2004;64:861–872.

    Article  PubMed  CAS  Google Scholar 

  42. Zhanel GG, Walters M, Noreddin A, et al. The ketolides: a critical review.Drugs. 2002;62:1771–1804.

    Article  PubMed  CAS  Google Scholar 

  43. Pastores GM, Barnett NL, Kolodny EH. An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment.Clin Ther. 2005;27: 1215–1227.

    Article  PubMed  CAS  Google Scholar 

  44. Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease.Am J Hematol. 2005;80:223–229.

    Article  PubMed  CAS  Google Scholar 

  45. Bardsley-Elliot A, Noble S, Foster RH. Mycophenolate mofetil: a review of its use in the management of solid organ transplantation.Bio Drugs. 1999;12:363–410.

    CAS  Google Scholar 

  46. Curran MP, Keating GM. Mycophenolate sodium delayed release: prevention of renal transplant rejection.Drugs. 2005;65:799–805.

    Article  PubMed  CAS  Google Scholar 

  47. Carswell CI, Plosker GL, Jarvis B. Rosuvastatin.Drugs. 2002;62:2075–2085.

    Article  PubMed  CAS  Google Scholar 

  48. Scott LJ, Curran MP, Figgitt DP. Rosuvastatin: a review of its use in the management of dyslipidemia.Am J Cardiovasc Drugs. 2004;4:117–138.

    Article  PubMed  CAS  Google Scholar 

  49. Mukhtar RYA, Reid J, Reckless JPD. Pitavastatin.Int J Clin Pract. 2005;59:239–252.

    Article  PubMed  CAS  Google Scholar 

  50. Fenton C, Keating GM, Curran MP. Daptomycin.Drugs. 2004;64:445–455.

    Article  PubMed  CAS  Google Scholar 

  51. Ogawa M. Novel anticancer drugs in Japan.J Cancer Res Clin Oncol. 1999;125:134–140.

    Article  PubMed  CAS  Google Scholar 

  52. Sugiura T, Ariyoshi Y, Negoro S, et al. Phase I/II study of amrubicin, a novel 9-aminoanthracycline, in patients with advanced non-small-cell lung cancer.Invest New Drugs. 2005;23:331–337.

    Article  PubMed  CAS  Google Scholar 

  53. Perry CM, Ibbotson T. Biapenem.Drugs. 2002;62:2221–2234.

    Article  PubMed  CAS  Google Scholar 

  54. Darkes MJM, Plosker GL. Cefditoren pivoxil.Drugs. 2002;62:319–336.

    Article  PubMed  CAS  Google Scholar 

  55. Keating G, Figgitt D. Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis.Drugs. 2003;63:2235–2263.

    Article  PubMed  CAS  Google Scholar 

  56. Letscher-Bru V, Herbrecht R. Caspofungin: the first representative of a new antifungal class.J Antimicrob Chemother. 2003;51:513–521.

    Article  PubMed  CAS  Google Scholar 

  57. McCormack PL, Perry CM. Caspofungin A: review of its use in the treatment of fungal infections.Drugs. 2005;65:2049–2068.

    Article  PubMed  CAS  Google Scholar 

  58. Sader HS, Gales AC. Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents.Drugs. 2001;61:553–564.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta AK, Chow M. Pimecrolimus: a review.J Eur Acad Dermatol Venereol. 2003;17:493–503.

    Article  PubMed  CAS  Google Scholar 

  60. Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicinγ 1.J Am Chem Soc. 1987;109:3464–3466.

    Article  CAS  Google Scholar 

  61. Giles F, Estey E, O'Brien S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia.Cancer. 2003;98:2095–2104.

    Article  PubMed  CAS  Google Scholar 

  62. Portugal J. Chartreusin, elsamicin A and related anti-cancer antibiotics.Curr Med Chem Anticancer Agents. 2003;3:411–420.

    Article  PubMed  CAS  Google Scholar 

  63. Lam KS, Veitch JA, Forenza S, Combs CM, Colson KL. Biosynthesis of elsamicin A, a novel antitumor antibiotic.J Nat Prod. 1989;52:1015–1021.

    Article  PubMed  CAS  Google Scholar 

  64. DiMarco A, Gaetani M, Orezzi P, Scotti T, Arcamone FF. Experimental studies on distamycin A—a new antibiotic with cytotoxic activity.Cancer Chemother Rep. 1962;18:15–19.

    PubMed  CAS  Google Scholar 

  65. Broggini M, Marchini S, Fontana E, Moneta D, Fowst C, Geroni C. Brostacillin: a new concept in mimor groove DNA binder development.Anticancer Drugs. 2004;15:1–6.

    Article  PubMed  CAS  Google Scholar 

  66. Geroni C, Marchini S, Cozzi P, et al. Brostalicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione.Cancer Res. 2002;62:2332–2336.

    PubMed  CAS  Google Scholar 

  67. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic.J Antibiot (Tokyo). 1970;23:442–447.

    CAS  Google Scholar 

  68. Sasaki K, Rinehart KL Jr, Slomp G, Grostic MF, Olson BC. Geldanamycin. I. Structure assignment.J Am Chem Soc. 1970;92:7591–7593.

    Article  PubMed  CAS  Google Scholar 

  69. Bisht KS, Bradbury M, Mattson D, et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate thein vitro andin vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity.Cancer Res. 2003;63:8984–8995.

    PubMed  CAS  Google Scholar 

  70. Kaur G, Belotti D, Burger AM, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator.Clin Cancer Res. 2004;10:4813–4821.

    Article  PubMed  CAS  Google Scholar 

  71. Supko JG, Eder JP, Ryan DP, et al. Phase I clinical trial and pharmacokinetic study of the spicamycin analog KRN500 administered as a 1-hour intravenous infusion for five consecutive days to patients with refractory solid tumors.Clin Cancer Res. 2003;9:5178–5186.

    PubMed  CAS  Google Scholar 

  72. Yoshinari T, Ohkubo M, Fukasawa K, et al. Mode of action of a new indolocarbazole anticancer agent, J-107088, targeting topoisomerase I.Cancer Res. 1999;59:4271–4275.

    PubMed  CAS  Google Scholar 

  73. Zaugg K, Rocha S, Resch H, et al. Differential p53-dependent mechanism of radiosensitizationin vitro andin vivo by the protein kinase C-specific inhibitor PKC412.Cancer Res. 2001;61:732–738.

    PubMed  CAS  Google Scholar 

  74. Long BH, Rose WC, Vyas DM, Matson JA, Forenza S. Discovery of antitumor indolocarbazoles: rebeccamycin, NSC 655649, and fluoroindolocarbazoles.Curr Med Chem Anticancer Agents. 2002;2:255–266.

    Article  PubMed  CAS  Google Scholar 

  75. Chen J, De Angelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorders.Proc Natl Acad Sci USA. 2004;101:14479–14484.

    Article  PubMed  CAS  Google Scholar 

  76. Kondapaka SB, Zarnowski M, Yver DR, Sausville EA, Cushman SW. 7-Hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation: a basis for decreased insulin-stimulated glucose transport.Clin Cancer Res. 2004;10:7192–7198.

    Article  PubMed  CAS  Google Scholar 

  77. Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biological and clinical activity in patients with relapsed or refractory acute myeloid leukemia.Blood. 2004;103:3669–3676.

    Article  PubMed  CAS  Google Scholar 

  78. Marshall JL, Kindler H, Deeken J, et al. Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor.Invest New Drugs. 2005;23:31–37.

    Article  PubMed  CAS  Google Scholar 

  79. Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. A new antifungal antibiotic, trichostatin.J Antibiot (Tokyo). 1976;29:1–6.

    CAS  Google Scholar 

  80. Plumb JA, Finn PW, Williams RJ, etal. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101.Mol Cancer Ther. 2003;2:721–728.

    PubMed  CAS  Google Scholar 

  81. Arts J, Schepper S, Emelen K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics.Curr Med Chem. 2003;10:2343–2350.

    Article  PubMed  CAS  Google Scholar 

  82. Atadja P, Gao L, Kwon P, et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824.Cancer Res. 2004;64:689–695.

    Article  PubMed  CAS  Google Scholar 

  83. Monneret C. Histone deacetylase inhibitors.Eur J Med Chem. 2005;40:1–13.

    Article  PubMed  CAS  Google Scholar 

  84. Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipetide (FR901228, NSC 630176), in patients with refractory neoplasms.Clin Cancer Res. 2002;8:718–728.

    PubMed  CAS  Google Scholar 

  85. Shiraga T, Tozuka Z, Ishimura R, Kawamura A, Kagawama A. Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes.Biol Pharm Bull. 2005;28:124–129.

    Article  PubMed  CAS  Google Scholar 

  86. Kosmidis PA, Manegold C. Advanced NSCLC: new cytostatic agents.Lung Cancer. 2003;41:S123-S132.

    Article  PubMed  Google Scholar 

  87. Starks CM, Zhou Y, Liu F, Licari PJ. Isolation and characterization of new epothilone analogues from recombinantMyxococcus xanthus fermentation.J Nat Prod. 2003;66:1313–1317.

    Article  PubMed  CAS  Google Scholar 

  88. Goodin S, Kane MP, Rubin EH. Epothilones: mechanism of action and biologic activity.J Clin Oncol. 2004;22:2015–2025.

    Article  PubMed  CAS  Google Scholar 

  89. Rizvi N, Villalona-Calere M, Lynch T, et al. Phase II study of KOS-862 (epothilone D) as second-line therapy in non-small cell lung cancer.Lung Cancer. 2005;49:S266-S267.

    Article  Google Scholar 

  90. Chun E, Han CK, Yoon JH, Sim TB, Kim Y-K, Lee K-Y. Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model.Int J Cancer. 2005;114:124–130.

    Article  PubMed  CAS  Google Scholar 

  91. Bernier SG, Lazarus DD, Clark E, et al. A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis.Proc Natl Acad Sci USA. 2004;101:10768–10773.

    Article  PubMed  CAS  Google Scholar 

  92. McMorris TC, Anchel M. Fungal metabolites. The structures of the novel sesquiterpenoids illudin-S and-M.J Am Chem Soc. 1965;87:1594–1600.

    Article  PubMed  CAS  Google Scholar 

  93. McMorris TC, Kelner MJ, Wang W, Yu J, Estes LA, Taetle R. (Hydroxymethyl)acylfulvene: an illudin derivative with superior antitumor properties.J Nat Prod. 1996;59:896–899.

    Article  PubMed  CAS  Google Scholar 

  94. Wang J, Wiltshire T, Wang Y, et al. ATM-dependent CHK2 activation induced by anticancer agent, irfulven.J Biol Chem. 2004;279:39584–39592.

    Article  PubMed  CAS  Google Scholar 

  95. Newman DJ, Cragg GM. Advanced preclinical and clinical trials of natural products and related compounds from marine sources.Curr Med Chem. 2004;11:1693–1713.

    PubMed  CAS  Google Scholar 

  96. Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials.J Nat Prod. 2004;67:1216–1238.

    Article  PubMed  CAS  Google Scholar 

  97. Capon RJ. Marine bioprospecting-trawling for treasure and pleasure.Eur J Org Chem. 2001;2001:633–645.

    Article  Google Scholar 

  98. Haefner B. Drugs from the deep: marine natural products as drug candidates.Drug Discov Today. 2003;8:536–544.

    Article  PubMed  CAS  Google Scholar 

  99. Jensen PR, Fenical W. Marine microorganisms and drug discovery: current status and future potential. In: Fusetani N, ed.Drugs from the Sea. New York: Karger, 2000:6–29.

    Chapter  Google Scholar 

  100. Schroeder CI, Smythe ML, Lewis RJ. Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel.Mol Divers. 2004;8:127–134.

    Article  PubMed  CAS  Google Scholar 

  101. Taraboletti G, Poli M, Dossi R, et al. Antiangiogenic activity of aplidine, a new agent of marine origin.Br J Cancer. 2004;90:2418–2424.

    PubMed  CAS  Google Scholar 

  102. Natori T, Morita M, Akimoto K, Koezuka Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine spongeAgelas mauritianus.Tetrahedron. 1994;50:2771–2784.

    Article  CAS  Google Scholar 

  103. Hayakawa Y, Rovero S, Forni G, Smyth MJ. α-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis.Proc Natl Acad Sci USA. 2003;100:9464–9469.

    Article  PubMed  CAS  Google Scholar 

  104. Newman DJ. The bryostatins. In: Cragg GM, Kingston DGI, Newman DJ, eds.Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005:137–150.

    Google Scholar 

  105. Honore S, Kamath K, Braguer D, Wilson L, Briand C, Jordan MA. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation.Mol Cancer Ther. 2003;2:1303–1311.

    PubMed  CAS  Google Scholar 

  106. Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10.J Am Chem Soc. 1987;109:6883–6885.

    Article  CAS  Google Scholar 

  107. Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM. Isolation and structure of the cytostatic linear depsipeptide dolastatin 15.J Am Chem Soc. 1989;54:6005–6006.

    CAS  Google Scholar 

  108. Kerbrat P, Dieras V, Pavlidis N, Ravaud A, Wanders J, Fumoleau P. Phase II study LU103793 (dolastatin analogue) in patients with metastatic breast cancer.Eur J Cancer. 2003;39:317–320.

    Article  PubMed  CAS  Google Scholar 

  109. Marks RS, Graham DL, Sloan JA, et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer.Am J Clin Oncol. 2003;26:336–337.

    Article  PubMed  CAS  Google Scholar 

  110. Kindler HL, Tothy PK, Wolff R, et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers.Invest New Drugs. 2005;23:489–493.

    Article  PubMed  CAS  Google Scholar 

  111. Perez EA, Hillman DW, Fishkin PA, et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer.Invest New Drugs. 2005;23:257–261.

    Article  PubMed  CAS  Google Scholar 

  112. Jordan MA, Kamath K, Manna T, et al. The primary antimiotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth.Mol Cancer Ther. 2005;4:1086–1095.

    Article  PubMed  CAS  Google Scholar 

  113. Loganzo F, Hari M, Annable T, et al. Cells resistant to HT-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin.Mol Cancer Ther. 2004;3:1319–1327.

    PubMed  CAS  Google Scholar 

  114. Suárez Y, González L, Cuadrado A, Berciano M, Lafarga M, Muñoz A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells.Mol Cancer Ther. 2003;2:863–872.

    PubMed  Google Scholar 

  115. Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FAE, Giaccone G. Kahalalide F induces necrosis-like cell death that involves depletion of ErB3 and inhibition of Akt signaling.Mol Pharmacol. 2005;68:502–510.

    PubMed  CAS  Google Scholar 

  116. Jimeno JM, Garcia-Gravalos D, Avila J, Smith B, Grant W, Faircloth GT. ES-285, a marine natural product with activity against solid tumors.Clin Cancer Res. 1999;5:3792s.

    Google Scholar 

  117. Cuadros R, Garcini EM, Wandosell F, Faircloth G, Fernández-Sousa JM, Avila J. The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers.Cancer Lett. 2000;152:23–29.

    Article  PubMed  CAS  Google Scholar 

  118. Moore KS, Wehrli S, Roger, H, et al. Squalamine: an aminosterol antibiotic from the shark.Proc Natl Acad Sci USA. 1993;90:1354–1358.

    Article  PubMed  CAS  Google Scholar 

  119. Hao D, Hammond LA, Eckhardt SG, et al. A phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor.Clin Cancer Res. 2003;9:2465–2471.

    PubMed  CAS  Google Scholar 

  120. Soares DG, Poletto NP, Bonatto D, Salvador M, Schwartsmann G, Henriques JAP. Low cytotoxicity of ecteinascidin 743 in yeast lacking the major endonucleolytic enzymes of base and nucleotide excision repair pathways.Biochem Pharmacol. 2005;70:59–69.

    Article  PubMed  CAS  Google Scholar 

  121. Rinehart KL. Antitumor compounds from tunicates.Med Res Rev. 2000;20:1–27.

    Article  PubMed  CAS  Google Scholar 

  122. Chen X, Chen J, De Paolis M, Zhu J. Synthetic studies toward ecteinascidin 743.J Org Chem. 2005;70:4397–4408.

    Article  PubMed  CAS  Google Scholar 

  123. Malhotra R, Singh L, Eng J, Raufman J-P. Exendin-4, a new peptide fromHeloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini.Regul Pept. 1992;41:149–156.

    Article  PubMed  CAS  Google Scholar 

  124. Keating GM. Exenatide.Drugs. 2005;65:1681–1692.

    Article  PubMed  CAS  Google Scholar 

  125. Gladwell TD. Bivalirudin: A direct thrombin inhibitor.Clin Ther. 2002;24:38–58.

    Article  PubMed  CAS  Google Scholar 

  126. Ledizet M, Harrison LM, Koskia RA, Cappello M. Discovery and preclinical development of antithrombotics from hematophagous invertebrates.Curr Med Chem Cardiovasc Hematol Agents. 2005;3:1–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Douglas Kinghorn.

Additional information

Published: April 14, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, YW., Balunas, M.J., Chai, H.B. et al. Drug discovery from natural sources. AAPS J 8, 28 (2006). https://doi.org/10.1007/BF02854894

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854894

Keywords

Navigation