Skip to main content
Log in

Diethyl maleate, an in vivo chemical depletor of glutathione, affects the response of male and female rats to arsenic deprivation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An experiment was performed to determine the effect of diethyl maleate (DEM), and in vivo depletor of glutathione, on the response of male and female rats to arsenic deprivation. A 2×2×2 factorially arranged experiment used groups of six weanling Sprague-Dawley rats. Dietary variables were arsenic at 0 or 0.5 μg/g and DEM at 0 or 0.25%; the third variable was gender. Animals were fed for 10 wk a casein-ground corn based diet that contained amounts of calcium, phosphorus, and magnesium similar to the AIN-76 diet. DEM supplementation increased blood arsenic in both male and female rats; female rats had the greatest amount of arsenic in whole blood. Although female rats in general had a lower concentration of glutathione in liver, those fed no supplemental DEM, regardless of their arsenic status, had the lowest amounts. Compared to males, female rats had a lower activity of liver glutathione S-transferase (GST). Arsenic deprivation decreased, and DEM supplementation increased liver GST activity in both male and female rats. Lung GST activity was also increased by DEM supplementation in male, but not female, rats. The most striking finding of the study was that compared to males, females had extremely elevated kidney calcium concentrations, and that the elevation was exacerbated by arsenic deprivation. DEM supplementation also exacerbated the accumulation of calcium in the kidney of the female rats. The response of the rat to both DEM and arsenic was, for many variables, dependent on gender. This gender dependence may be explained by the differences in methionine metabolism between male and female rats. Thus, arsenic deprivation apparently can manifest itself differently depending on gender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Uthus and R. Poellot,Mag. Trace Elem. 10, 339–347 (1991-92).

    Google Scholar 

  2. E. Uthus and R. Poellot,J. Trace Elem. Exp. Med. 5, 153–164 (1992).

    CAS  Google Scholar 

  3. E. O. Uthus,Environ. Geochem. Health 14, 55–58 (1992).

    Article  CAS  Google Scholar 

  4. J. L. Plummer, B. R. Smith, H. Sies, and J. R. Bend,Methods in Enzymology, vol. 77, Jakoby, W. B., ed., Academic, New York, pp. 50–59 (1981).

    Google Scholar 

  5. E. Soon, N. Johnson, and B. C. F. Snider,J. Nutr. 114, 1853–1862 (1984).

    Google Scholar 

  6. J. De La Rosa and M. H. Stipanuk,Comp. Biochem. Physiol. B 81, 565–571 (1985).

    Article  PubMed  Google Scholar 

  7. F. H. Nielsen and B. Bailey,Lab. Anim. Sci. 29, 502–506 (1979).

    PubMed  CAS  Google Scholar 

  8. F. H. Nielsen, D. R. Myron, S. H. Givand, and D. A. Ollerich,J. Nutr. 105, 1607–1619 (1975).

    PubMed  CAS  Google Scholar 

  9. O. W. Griffith,Methods of Enzymatic Analysis, vol. VIII, 3rd ed., Bergmeyer, H. U., ed., VCH, Deerfield Beach, FL, pp. 521–529 (1985).

    Google Scholar 

  10. W. H. Habig and W. B. Jakoby,Methods in Enzymology, vol. 77, Jakoby, W. B., ed., Academic, New York, pp. 218–231 (1981).

    Google Scholar 

  11. W. H. Habig and W. B. Jakoby,Methods in Enzymology, vol. 77, Jakoby, W. B., ed., Academic, New York, pp. 398–405 (1981).

    Google Scholar 

  12. F. H. Nielsen, T. J. Zimmerman, T. R. Shuler, B. Brossart, and E. O. Uthus,Trace Elem. Exp. Med. 2, 21–29 (1989).

    CAS  Google Scholar 

  13. SAS InstituteSAS User's Guide: Statistics, ed. 5, SAS Institute, Cary (1985).

    Google Scholar 

  14. J. L. Barnhart and J. Combes,J. Pharmacol. Exp. Ther. 206, 614 (1978).

    PubMed  CAS  Google Scholar 

  15. R. F. Burk and M. A. Correia,Res. Comm. Chem. Pathol. Pharmacol. 24, 205 (1979).

    CAS  Google Scholar 

  16. J. Alexander and J. Aaseth,Nutr. Res. Suppl. 1, S-515–S-519 (1985).

    Google Scholar 

  17. I. Anundi, J. Högberg, and M. Vahter,FEBS Lett. 145, 285–288 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. S. Taketani, H. Kohno, T. Yoshinaga, and R. Tokunaga,Biochem. Int. 17, 665–672 (1988).

    PubMed  CAS  Google Scholar 

  19. M. Hirose, M. Kagawa, K. Ogawa, A. Yamamoto, and N. Ito,Carcinogenesis 10, 2223–2226 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. W. H. Habig, M. J. Pabst, and W. B. Jakoby,J. Biol. Chem. 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  21. O. W. Griffith,Methods in Enzymology, vol. 77, Jakoby, W. B., ed., Academic, New York, pp. 59–63 (1981).

    Google Scholar 

  22. T. O. Eloranta, V. Martikainen, and T. K. Smith,Proc. Soc. Exp. Biol. Med. 194, 364–371 (1989).

    Google Scholar 

  23. G.-P. Xue and A. M. Snoswell,Comp. Biochem. Physiol. B 80, 489–494 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. A. J. Barak, H. C. Beckenhauer, and D. J. Tuma,Anal. Biochem. 127, 372–375 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. S. H. Mudd and J. R. Poole,Metabolism 24, 721–735 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. E. O. Uthus,Mag. Trace Elem. 9, 227–232 (1990).

    CAS  Google Scholar 

  27. E. O. Uthus,Proc. ND Acad. Sci. 47, 56 (1993).

    Google Scholar 

  28. H. Garcin, C. Suberville, and P. Higueret,Brit. J. Nutr. 61, 301–307 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. J. P. Buchet and R. Lauwerys,Arch. Toxicol. 57, 125–129 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. E. O. Uthus, R. Poellot, and F. H. Nielsen,6th International Trace Element Symposium 1989, M. Anke, W. Baumann, H. Bräunlich, Chr. Brückner, B. Groppel, and M. Grun, eds., Friedrich-Schiller-Universität, Jena, pp. 1013–1017 (1989).

    Google Scholar 

  31. W. E. Cornatzer, E. O. Uthus, J. A., Haning, and F. H. Nielsen,Nutr. Rep. Internat. 27, 821–829 (1983).

    CAS  Google Scholar 

  32. M. Vahter and E. Marafante,Spec. Publ.-R Soc. Chem. 66, 105–119 (1988).

    CAS  Google Scholar 

  33. C. Adams, J. Ritskes-Hoitinga, A. G. Lemmens, and A. C. Beynen,Nutr. Rep. Internat. 40, 923–929 (1989).

    CAS  Google Scholar 

  34. B. G. Shah, K. D. Trick, and B. Belonje,Nutr. Res. 6, 559–570 (1986).

    Article  CAS  Google Scholar 

  35. B. G. Shah, and B. Belonje,Nutr. Res. 11, 385–390 (1991).

    Article  CAS  Google Scholar 

  36. P. G. Reeves, K. L. Rossow, and J. Lindlauf,J. Nutr.,123, 1923–1931 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthus, E.O. Diethyl maleate, an in vivo chemical depletor of glutathione, affects the response of male and female rats to arsenic deprivation. Biol Trace Elem Res 46, 247–259 (1994). https://doi.org/10.1007/BF02789300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789300

Index Entries

Navigation