Skip to main content
Log in

Chromosome 21 abnormalities a review and report of a case of erondu-cymet syndrome

  • Original Articles
  • Published:
Comprehensive Therapy

Original Article

The co-existence of rare clinical findings in a patient with a genetic abnormality has often led to the characterization of new syndromes. Although these genetic syndromes are generally rare, the pathophysiology of these disorders has broadened our understanding of common medical conditions. The variety of disorders that map to chromosome 21 provide insight into the effects of lifelong low pO2 and poor perfusion on various organs. In discovering the different disorders that map specifically to chromosome 21, we can characterized, treat and even prevent some medical conditions. We present the case of a man whose incidental finding of hypoxemia lead to the discovery of many unusual disorders that appear to be related to abnormalities in chromosome 21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanco J, Gabau E, Gomez D, et al. Chromosome 21 disomy in the spermatozoa of the fathers of children with trisomy 21, in a population with a high prevalence of Down syndrome: increased incidence in cases of paternal origin. Am J Hum Genet 1998;63(4):1067–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prasher VP, Farrer MJ, Kressling AM, et al. Molecular mapping of Alzheimer-type dementia in Down syndrome. Ann Neurol 1998;43(3):380–383.

    Article  CAS  PubMed  Google Scholar 

  3. Griffin DK, Abruzzo MA, Millie EA, Feingold E, Hassold TJ. Sex ratio in normal and disomic sperm: evidence that the extra chromosome 21 preferentially segregates with the Y chromosome. Am J Hum Genet 1996;59(5):1108–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Taub, JW, Matherly LH, Stout ML, Buck SA, Gurney JG, Ravindranath Y. Enhanced metabolism of 1-beta-D-arabinofuranosylcystosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood 1996;87(8):3395–3403.

    CAS  PubMed  Google Scholar 

  5. Francalanci P, Gallo P, Dallapiccola B, Calabrese G, Marino B. A genetic assessment of trisomy 21 in a patient with persistent truncus arteriosus who died 38 years ago. Am J Cardiol 1997;79(2): 245–247.

    Article  CAS  PubMed  Google Scholar 

  6. Joosten AM, De Vos S, Van Opstal D, Brandenburg H, Gaillard JL, Vermeij-Keers C. Full monosomy 21, prenatally diagnosed by fluorescent in situ hybridization. Prenatal Diagnosis 1997;17(3):271–275.

    Article  CAS  PubMed  Google Scholar 

  7. Peskind ER. Neurobiology of Alzheimer’s disease. J Clin Psych 1996;57 Suppl 14:5–8.

    Google Scholar 

  8. Worth LL, Zipursky A, Christensen H, Tubergen D. Transient leukemia with extreme basophilia in a phenotypically normal infant with blast cells containing a pseudodiploid clone, 46,XY1(21)(q10). J Pediat Hematol Oncol 1999;21(1):63–66.

    Article  CAS  Google Scholar 

  9. Corsetti MT, Calabi F, Lineage- and stage-specific expression of runt box polypeptides in primitive and definitive hematopoiesis. Blood 1997;89(7):2359–2368.

    CAS  PubMed  Google Scholar 

  10. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 Trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998;92(7):2322–2333.

    CAS  PubMed  Google Scholar 

  11. Miyamoto T, Nagafuji K, Akashi K, et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996;87 (11):4789–4796.

    CAS  PubMed  Google Scholar 

  12. Porwit-MacDonald A, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21). Blood 1996;87(3):1162–1169.

    CAS  PubMed  Google Scholar 

  13. Kong XT, Ida K, Ichikawa H, et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood 1997;90(3):1192–1199.

    CAS  PubMed  Google Scholar 

  14. Arber DA, Glackin C, Lowe G, Medeiros LJ, Slovak ML. Presence of t(8;21)(q22;q22) in myeloperoxidase-positive, myeloid surface antigen-negative acute myeloid leukemia. Am J Clin Pathol 1997;107(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  15. Tobal K, Yin JA. Monitoring of minimal residual disease by quantitative reverse transcriptase-polymerase chain reaction for AML1-MTG8 transcripts in AML-M2 with t(8;21). Blood 1996;88(10):3704–3709.

    CAS  PubMed  Google Scholar 

  16. Erickson PF, Dessev G, Lasher RS, Philips G, Robinson M, Drabkin HA. ETO and AML1 phosphoprotiens are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 1996;88(5):1813–1823.

    CAS  PubMed  Google Scholar 

  17. Rubnitz JE, Downing JR, Pui CH, et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol 1997;15(3):1150–1157.

    Article  CAS  PubMed  Google Scholar 

  18. Rubnitz JE, Shuster JJ, Land VJ, et al. Case-control study suggests a favorable impact of TEL rearrangement in patients with B-lineage acute lymphoblastic leukemia treated with antimetabolite-based therapy: a Pediatric Oncology Group Study. Blood 1997;89(4):1143–1146.

    CAS  PubMed  Google Scholar 

  19. McClean TW, Ringold S, Neuberg D, et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 1996;88(11):4252–4258.

    Google Scholar 

  20. Kim DH, Moldwin RL, Vignon C, et al. TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. Blood 1996;88(3):785–794.

    CAS  PubMed  Google Scholar 

  21. Cayuela JM, Baruchel A, Orange C, et al. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 1996;88(1):302–308.

    CAS  PubMed  Google Scholar 

  22. Roulston D, Espinosa III R, Nucifora G, Larson RA, LeBeau MM, Rowley JD. CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy. Blood 1998;92(8):2879–2885.

    CAS  PubMed  Google Scholar 

  23. Marianeschi S, McElhinney DB, Mohan Reddy V. Pulmonary arteriovenous malformations in and out of the setting of congenital heart disease. Ann Thoracic Surger 1998;66:688–691.

    Article  CAS  Google Scholar 

  24. Gossage JR, Kanj G. Pulmonary arteriovenous malformations. A state of the art review. Am J Respiratory Crit Care Med 1998;158: 643–661.

    Article  CAS  Google Scholar 

  25. Arguero R, Careaga G, Castano R, Garrido M, Sanchez O. Orthotopic heart transplantation for dilated cardiomyopathy in a patient with persistent left superior vena cava and atresia of the right superior vena cava. J Cardiovascul Surg 1997;38:403–405.

    CAS  Google Scholar 

  26. Bartram U, Van Praagh S, Levine JC, et al. Absent right superior vena cava in situs solitus. Am J Cardiol 1997;80:175–183.

    Article  CAS  PubMed  Google Scholar 

  27. Kreutzer C, Santiago G, Fernando Varon R, et al. Persistent left superior vena cava: an unusual cause of subdivided left atrium. J Thor Cardiovascul Surg 1998;115:462–464.

    Article  CAS  Google Scholar 

  28. Takach T J, Cortelli M, Lonquist JL, Cooley DA. Correction of anomalous systemic venous drainage: transposition of left SVC to left PA. Ann Thorac Surger 1997;63:228–230.

    Article  CAS  Google Scholar 

  29. McElhinney DB, Mishaly DA, Moore P, et al. Isolated left superior vena cava to the left atrium with situs solitus and dextrocardia: extracardiac repair facilitated by juxtaposition of the atrial appendages. Am J Cardiol 1997;80:1379–1381.

    Article  CAS  PubMed  Google Scholar 

  30. Lazar RM, Connaire K, Marshall RS, et al. Developmental deficits in adult patients with arteriovenous malformations. Arch Neurol 1999;56:103–106.

    Article  CAS  PubMed  Google Scholar 

  31. Pearce SH, Cheetham T, Imrie H, et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type I. Am J Hum Genet 1998;63(6):1675–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jensen LN, Gerstenberg T, Kallestrup EB, Koefoed P, Nordling J, Nielson JE. Urodynamic evaluation of patients with autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. J Neurol Neurosurg Psychiatry 1998;65(5):693–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebeling SB, Bos HM, Slater R, et al. Human chromosome 21 determines growth factor dependence in human/mouse B-cell hybridomas. Cancer Res 1998;58(13):2863–2868.

    CAS  PubMed  Google Scholar 

  34. Smith MT, Zhang L, Wang Y, et al. Increased translocations and aneusomy in chromosomes 8 and 21 among workers exposed to benzene. Cancer Res 1998;58(10):2176–2181.

    CAS  PubMed  Google Scholar 

  35. Fagnou C, Michon J, Peter M, et al. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Societe Francaise d’Oncologie Pediatrique. J Clin Oncol 1998;16(5):1707–171.

    Article  CAS  PubMed  Google Scholar 

  36. Linares-Cruz G, Bruzzoni-Giovanelli H, Alvaro V, et al. p21WAF-1 reorganizes the nucleus in tumor suppression. Proc Natl Acad Sci USA 1998;95(3):1131–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Satge D, Sasco AJ, Carlsen NL, et al. A lack of neuroblastoma in Down syndrome: a study from 11 European countries. Cancer Res 1998;58(3):448–452.

    CAS  PubMed  Google Scholar 

  38. Parmeggiani A, Lehesjoki AE, Czrelli V, et al. Familial Unverricht-Lundborg disease: a clinical, neurophysiologic, and genetic study. Epilepsia 1997;38(6):637–641.

    Article  CAS  PubMed  Google Scholar 

  39. Pennacchio LA, Lehesjoki AE, Stone NE, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 1996;271(5256):1731–1734.

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Rossier C, Lalioti MD, et al. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3. Am J Hum Genet 1996;59(1):66–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ho CY, Otterud B, Legare RD, et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1-22.2. Blood 1996;87(12):5218–5224.

    CAS  PubMed  Google Scholar 

  42. Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G. Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA 1996;93(4):1642–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cymet TC, Erondu UA. Erondu-Cymet syndrome: survivability of 46 XY, inv(21)(q11.2q22.1). JAOA 2001;101:475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler Childs Cymet DO.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erondu, U.A., Cymet, T.C. Chromosome 21 abnormalities a review and report of a case of erondu-cymet syndrome. Compr Ther 32, 254–260 (2006). https://doi.org/10.1007/BF02698072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698072

Keywords

Navigation