Skip to main content
Log in

Protein polymorphism and genetic divergence in slow loris (genusNycticebus)

  • Short Communication
  • Published:
Primates Aims and scope Submit manuscript

Abstract

In this study, protein electrophoresis was assayed to detect genetic variation in GenusNycticebus. A total of 29 samples (2N. coucang and 27N. pygmaeus) were analyzed for 42 genetic loci. In the 27 samples ofN. pygmaeus, 4 loci were observed to be polymerphic. Therefore, the estimatedP value (proportion of polymorphic loci) is 0.095, theA value (average number of alleles each locus) is 1.045, and theH value (mean individual heterozygosity) is 0.040. After comparing theH ofN. pygmaeus with those of other primates reported, we found that the protein variation inN. pygmaeus is slightly lower than the average level. Additionally, we also observed obivious allele difference betweenN. pygmaeus andN. coucang. There are no shared alleles between these two species in eight loci. TheNei's genetic distance between them was calculated as 0.2541, which falls in the spectrum of genetic difference between species in primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Chen, Z. P.;Zhang, Y. P.;Shi, L. M.;Liu R. Q., Wang, Y. X. 1993. Studies on the chromosomes of genusNycticebus.Primates, 34: 47–53

    Article  Google Scholar 

  • Dao, V. T. 1960. Sur une nouvelle espece deNycticebus au Vuetnam.Zool. Anz., 164: 240–243.

    Google Scholar 

  • Ferrand, N. 1990. Biochemical and genetic studies on rabbit hemoglobin: II. Electrophoretic polymorphism of the α-chain.Biochem. Genet., 28: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Groves, C. P. 1971. Systematics of the genusNycticebus. In:Proceedings of the 3rd International Congress of Primatology, Zurich, Vol. 1, Karker, Basel, pp. 44–53.

    Google Scholar 

  • Hill, W. C. 1953.Primates: Comparative Anatomy and Taxonomy: I Strepsirhini. Edinburgh Univ. Press, Edinburgh.

    Google Scholar 

  • Kawamoto, Y.;Ischak, Tb. M. 1981. Genetic differentiation of Indonesian crab-eating macaque (Macaca fascicularis): I. Preliminary report on blood protein, polymorphism.Primates, 22: 237–252.

    Article  CAS  Google Scholar 

  • Kawamoto, Y.;Nozawa, K.;Matsubayashi, K.;Gotoh, S. 1988. A population-genetic study of crabeating macaques (Macaca, fascicularis) on the island of Angaur, Palau, Micronesia.Folia Primatol., 51: 169–181.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S. L.;Wang, Y. X. 1988. The recent distribution, status and conservation of primates in China.Acta Theriol. Sinica, 8: 250–260.

    Google Scholar 

  • Meireles, C. M. M.;Sampaio, M. I. C.;Schneider, H.;Schneider, M. P. C. 1992. Protein variation, taxonomy and differentiation in five species of marmosets (genusCallithrix).Primates, 33: 227–238.

    Article  Google Scholar 

  • Melnick, D. J. 1988. The genetic structure of a primate species: rhesus macaques and otherCercopithecine monkeys.Int. J. Primatol., 9: 195–231.

    Google Scholar 

  • Melnick, D. J.;Jolly, C. J.;Kidd, K. K. 1984. The genetics of a wild population of rhesus monkeys (Macaca mulatta): I. Genetic variability within and between social groups.Amer. J. Phys. Anthropol., 63: 341–360.

    Article  Google Scholar 

  • Melo, A. C. A.;Sampaio, M. I. C.;Schneider, M. P. C.;Schneider, H. 1992. Biochemical diversity and genetic distance in two species of the genusSaguinus.Primates, 33: 217–225.

    Article  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics, 89: 583–590.

    PubMed  Google Scholar 

  • Nevo, E.;Beiles, A.;Ben-Schlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In:Evolutionary Dynamics of Genetic Diversity,Mani,G. S. (ed.), Springer, Berlin.

    Google Scholar 

  • Newman, A.;Bush, M.;Wildt, D. E.;Van Dam, D.;Frankenhuis, M. Th.;Simmons, L.;Phillips, L.;O'Brien, S. J. 1985 Biochemical genetic variation in eight endangered or threatened felid species.J. Mammal., 66: 256–267.

    Article  Google Scholar 

  • Nowak, R. M. 1991.Walker's Mammals of the World, Vol. 1 (5th ed.). The Johns Hopkins Univ. Press, Baltimore & London.

    Google Scholar 

  • Nozawa, K.;Shotake, T.;Minezawa, M.;Kawamoto, Y.;Hayasaka, K.;Kawamoto, S.;Ito, S. 1991. Population genetics of Japanese monkeys: III. Ancestry and differentiation of local populations.Primates, 32: 411–435.

    Article  Google Scholar 

  • Nozawa, K.;Shotake, T.;Ohkura, Y.;Tanabe, Y. 1977. Genetic variations within and between species of Asian macaques.Jap. J. Genet., 52: 15–30.

    Google Scholar 

  • O'Brien, S. J.;Wildt, D. E. 1983. The cheetah is depauperate in genetic, variation.Science, 221: 459–462.

    Article  PubMed  Google Scholar 

  • Pasteur, N.;Pasteur, G. 1990.Practical, Isozyme, Genetics, Haslted Press, New York.

    Google Scholar 

  • Petter, J. J. 1979. Classification of the prosimians. In:The Study of Prosimian Behavior,Doyle,G. A.;Martin,R. D. (eds.), Academic Press, New York, pp. 1–44.

    Google Scholar 

  • Shaw, C. R.;Prasad, R. 1970. Starch gel electrophoresis of enzymes: a complication of recipes.Biochem. Genet., 4: 297–320.

    Article  PubMed  CAS  Google Scholar 

  • Shotake, T.;Nozawa, K. 1984. Blood protein variation in baboons: II. Genetic variability within and among herds of gelada baboons in the central Ethiopian plateau.J. Human Evol., 13: 265–274.

    Article  Google Scholar 

  • Silva, B. T. F.;Sampaio, M. I. C.;Schneider, H.;Schneider, M. P. C.;Montoya, E.;Encarnacion, F.;Callegari-Jacques, S. M.;Salzano, F. M. 1993. Protein electrophoretic variability inSaimiri and the question of its species status.Amer. J. Primatol., 29: 183–193.

    Article  CAS  Google Scholar 

  • Smith, M. H. 1978. Spatial temporal dynamical of the genetic organization of small mammal populations. In:Proceedings of the Population Dynamics of Small Mammals, Pymatuning Laboratory, Linesille, Pennsylvania.

  • Su, B.;Shi, L. M. 1994. Genetic diversity in giant panda evidence from protein electrophoresis.Chinese Sci. Bull. 39: 1305–1309.

    Google Scholar 

  • Su, B.;Shi, L. M. 1995. Genetic diversity in the snub-nosed monkey (Rhinopithecus bieti) as estimated by protein electrophoresis.Conserv. Biol., 9: 947–951.

    Article  Google Scholar 

  • Tan, B. J. 1995. The status of primates in China.Primate Conserv., 5: 63–81.

    Google Scholar 

  • Wang, W.;Su, B.;Lan, H. 1996. Interspecific differentiation of the slow lorises (genusNycticebus) inferred from ribosomal DNA restriction maps.Zool. Res., 17: 89–93.

    Google Scholar 

  • Zhang, Y. P.;Chen, Z. P.;Shi, L. M. 1993. Phylogeny of the slow loris (genusNycticebus): an approach using mitochondrial DNA restriction enzyme, analysis.Int. J. Primatol., 14: 167–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Su, B., Wang, W. & Zhang, YP. Protein polymorphism and genetic divergence in slow loris (genusNycticebus). Primates 39, 79–84 (1998). https://doi.org/10.1007/BF02557745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557745

Key Words

Navigation