Skip to main content
Log in

Peripheral nerve stimulation by induced electric currents: Exposure to time-varying magnetic fields

  • Review
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The review evaluates thresholds of peripheral nerve stimulation by complex current waveforms. A neuroelectric model employing Frankenhaeuser-Huxley membrane nonlinearities is used to derive excitation thresholds for monophasic and biphasic pulse sequences, as well as sinusoidal stimuli. The model, along with principles of magnetic field induction, is used to derive criteria of acceptability for exposure to time-varying magnetic fields. Applications to pulsed gradient fields from magnetic resonance imaging devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, A. B. andMunson, W. A. (1951) Electrical stimulation of nerves in the skin at audio frequencies.J. Acoust. Soc. Am.,23, 155–159.

    Article  Google Scholar 

  • Barker, A. T., Freeston, I. L., Jalinous, B. andJarratt, J. A. (1987) Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation.Neurosurg.,20, 100–109.

    Google Scholar 

  • Bernhardt, J. H. (1985) Evaluation of human exposures to low frequency fields. The impact of proposed frequency radiation standards on military operations. Lecture Series 138 Advisory Group for Aerospace Res. & Dev. (NATO), Surseine, France.

    Google Scholar 

  • Brazier, M. A. (1977)Electrical activity of the nervous system. Williams & Williams Co., Baltimore.

    Google Scholar 

  • Caruso, P. M., Pearce, J. A. andDeWitt, D. P. (1979) Temperature and current density distributions at electrosurgical dispersive electrode sites. Proc. 7th New England Bioeng. Conf., Troy, New York, 22nd–23rd March, 373–376.

  • Chatterjee, I., Wu, D. andGandhi, O. P. (1986) Human body impedance and threshold currents for perception and pain for contact hazard analysis in the VLF-MF band.IEEE Trans.,BME-33, 486–494.

    Google Scholar 

  • Dalziel, C. F. (1972) Electric shock hazard.IEEE Spectrum,9, (2), 41–50.

    Article  Google Scholar 

  • Frankenhaeuser, B. andHuxley, A. F. (1964) The action potential in the myelinated nerve fiber ofXenopus laevis as computed on the basis of voltage clamp data.J. Physiol.,171, 302–315.

    Google Scholar 

  • Hodgkin, A. L. andHuxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve.Ibid.,,117, 500–544.

    Google Scholar 

  • Irwin, D., Rush, S., Evermy, R., Lepeschkin, E., Montgomery, D. B. andWeggel, R. J. (1970) Stimulation of cardiac muscle by a time-varying magnetic field.IEEE Trans.,MAG-6, 321–322.

    Google Scholar 

  • Kandel, E. R. andSchwartz, J. B. (1981)Principles of neural science. Elsevier/North-Holland, New York.

    Google Scholar 

  • Kloss, D. A. andCarstensen, E. L. (1983) Effects of ELF electric fields on the isolated frog heart.IEEE Trans.,BME-30, 347–348.

    Google Scholar 

  • McNeal, D. R. (1976) Analysis of a model for excitation of myelinated nerve.Ibid.,,BME-23, 329–337.

    Google Scholar 

  • McNeal, D. R. andTeicher, D. A. (1977) Effect of electrode placement on threshold and initial site of excitation of a myelinated nerve fiber. InFunctional electrical stimulation.Hambrecht, T. F. andReswick, J. B. (Eds.), Marcel Decker Inc., New York.

    Google Scholar 

  • McRobbie, D. andFoster, M. A. (1984) Thresholds for biological effects of time-varying magnetic fields.Clin. Phys. Physiol. Meas.,5, 67–78.

    Article  Google Scholar 

  • McRobbie, D. andFoster, M. A. (1985) Cardiac response to pulsed magnetic fields with regard to safety in NMR imaging.Phys. in Med. & Biol.,30, 695–702.

    Article  Google Scholar 

  • NRPB, National Radiological Protection Board (1983) Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging.Br. J. Radiol.,56, 974–977.

    Article  Google Scholar 

  • Polson, M. J. R., Barker, A. T. andGardiner, S. (1982a) The effect of rapid rise-time magnetic fields on the ECG of the rat.Clin. Phys. Physiol. Meas.,3, 231–234.

    Article  Google Scholar 

  • Polson, M. J. R., Barker, A. T. andFreeston, I. L. (1982b) Stimulation of nerve trunks with time-varying magnetic fields.Med. & Biol. Eng. & Comput.,20, 243–244.

    Google Scholar 

  • Ranck, J. B. (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review.Brain Res.,98, 417–440.

    Article  Google Scholar 

  • Reilly, J. P. andLarkin, W. D. (1983) Electrocutaneous stimulation with high voltage capacitive discharges.IEEE Trans.,BME-30, 631–641.

    Google Scholar 

  • Reilly, J. P. andLarkin, W. D. (1984) Understanding transient electric shock.Johns Hopkins APL Tech. Dig.,5, 296–304.

    Google Scholar 

  • Reilly, J. P., Freeman, V. T. andLarkin, W. D. (1985) Sensory effects of transient electrical stimulation—evaluation with a neuroelectric model.IEEE Trans.,BME-32, 1001–1011.

    Google Scholar 

  • Reilly, J. P. andBauer, R. H. (1987) Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study.Ibid.,,BME-34, 752–754.

    Google Scholar 

  • Reilly, J. P. andLarkin, W. D. (1987) Human sensitivity to electric shock induced by power frequency electric fields.Ibid.,,EMC-29, 221–232.

    Google Scholar 

  • Reilly, J. P. (1988) Neuroelectric models for electrical stimulation studies.Johns Hopkins APL Tech. Dig.,9, (1), 44–59.

    Google Scholar 

  • Roy, O. Z., Mortimer, A. J., Trollope, B. J. andVilleneuve, E. J. (1985) Electrical stimulation of the isolated rabbit heart by short duration transients. pp. 77–86 InElectrical shock safety criteria,Bridges,J. E.,Ford,G. L.,Sherman,I. A. andVainberg,M. (Eds.), Pergamon Press, New York.

    Google Scholar 

  • Ruch, T. C., Patton, H. D., Woodbury, J. W. andTowe, A. L. (1968)Neurophysiology, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Saunders, F. A. (1974) Electrocutaneous displays. Proc. Conf. on Cutaneous Communication Systems and Devices, The Psychonomic Society, Austin, Texas, 20–26.

  • Silny, J. (1986) The influence of threshold of the time-varying magnetic field in the human organism. InBiological effects of static and extremely low frequency magnetic fields.Bernhardt, J. H. (Ed), MMV Medzin Verlag, München, 105–115.

    Google Scholar 

  • Ueno, S., Harada, K, Ji, C. andOomura, Y. (1984) Magnetic nerve stimulation without interlinkage between nerve and magnetic flux,IEEE Trans.,MAG-20, 1660–1662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, J.P. Peripheral nerve stimulation by induced electric currents: Exposure to time-varying magnetic fields. Med. Biol. Eng. Comput. 27, 101–110 (1989). https://doi.org/10.1007/BF02446217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446217

Keywords

Navigation