Skip to main content
Log in

Reconstituted Cl pump protein: A novel ion(Cl)-motive ATPase

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cl absorption by theAplysia californica foregut is effected through an active Cl transport mechanism located in the basolateral membrane of the epithelial absorptive cells. These basolateral membranes contain both Cl-stimulated ATPase and ATP-dependent Cl transport activities which can be incorporated into liposomes via reconstitution. Utilizing the proteoliposomal preparation, it was demonstrated that ATP, and its subsequent hydrolysis, Mg2+, Cl, and a pH optimum of 7.8 were required to generate maximal intraliposomal Cl accumulation, electrical negativity, and ATPase activity. Additionally, an inwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically positive, enhanced both ATP-driven Cl accumulation and electrical potential while an outwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically negative, decreased both ATP-driven Cl accumulation and electrical potential compared with proteoliposomes lacking the ionophore. Either orthovanadate orp-chloromercurobenzene sulfonate inhibited both the ATP-dependent intraliposomal Cl accumulation, intraliposomal negative potential difference, and also Cl-stimulated ATPase activity. Both aspects of Cl pump transport kinetics and its associated catalytic component kinetics were the first obtained utilizing a reconstituted transporter protein. These results strongly support the hypothesis that Cl-ATPase actively transports Cl by an electrogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanck, A., and Oeslerhelt, D. (1987).EMBO J. 6, 265–273.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1981).Am. J. Physiol. 240, R61-R69.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1983).Am. J. Physiol. 244, R143-R149.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1984).Biochim. Biophys. Acta 775, 389–394.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1988).Am. J. Physiol. 254, R127-R133.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1990).Biochim. Biophys. Acta 1030, 301–303.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1993a).FEBS Lett. 333, 137–140.

    PubMed  Google Scholar 

  • Gerencser, G. A. (1993b).Biochem. Biophys. Res. Commun. 196, 1188–1194.

    PubMed  Google Scholar 

  • Gerencser, G. A., and Lee, S. H. (1985a).Am. J. Physiol. 248, R241-R248.

    PubMed  Google Scholar 

  • Gerencser, G. A., and Lee, S. H. (1985b).Biochim. Biophys. Acta 816, 415–417.

    Google Scholar 

  • Gerencser, G. A., and White, J. F. (1980).Am. J. Physiol. 239, R445-R449.

    PubMed  Google Scholar 

  • Gerencser, G. A., and Zelezna, B. (1992).Zool. Sci. 9, 925–939.

    Google Scholar 

  • Gerencser, G. A., and Zelezna, B. (1993).Proc Natl. Acad. Sci. 90, 7970–7974.

    PubMed  Google Scholar 

  • Gerencser, G. A., White, J. F., Gradmann, D., and Bonting, S. L. (1988).Am. J. Physiol. 255, R677-R692.

    PubMed  Google Scholar 

  • Ikeda, M., Schmid, R., and Oesterhelt, D. (1990).Biochemistry 29, 2057–2065.

    PubMed  Google Scholar 

  • Inagaki, C., and Shiroya, T. (1988).Biochem. Biophys. Res. Commun. 154, 108–112.

    PubMed  Google Scholar 

  • Lukacovic, M. F., Feinstein, M. B., Shalafi, R. I., and Perrine, S. (1981).Biochemistry 20, 3145–3151.

    PubMed  Google Scholar 

  • McCormick, J. I., Silivius, J. R., and Johnstone, R. M. (1985).J. Biol. Chem. 260, 5706–5714.

    PubMed  Google Scholar 

  • Nyren, P., and Baltscheffsky, M. (1983).FEBS Lett. 155, 125–130.

    PubMed  Google Scholar 

  • Pedersen, P. L., and Carafoli, E. (1987).Trends Biochem. Sci. 12, 146–150.

    Google Scholar 

  • Post, R. L., Sen, A. K., and Rosenthal, A. S. (1965).J. Biol. Chem. 240, 1437–1445.

    PubMed  Google Scholar 

  • Rothstein, A. (1970).Current Topics in Membranes and Transport (Bronner, F., and Kleinzeller, A., eds.), Academic Press, New York, pp. 135–176.

    Google Scholar 

  • Schuurmans-Stekhoven, F., and Bonting, S. L. (1981).Physiol. Rev. 61, 1–76.

    PubMed  Google Scholar 

  • Shiroya, T., Fukunaga, R., Akashi, K., Shimada, N., Takagi, Y., Nishino, T., Hara, M., and Inagaki, C. (1989).J. Biol. Chem. 264, 17416–17421.

    PubMed  Google Scholar 

  • Slayman, C. L., and Zuckier, G. R. (1989). InBicarbonate, Chloride, and Proton Transport Systems (Durham, J., and Hardy, M., eds.),Ann. N.Y. Acad. Sci. 574, 233–245.

  • Vara, F., and Serrano, R. (1982).J. Biol. Chem. 257, 12826–12830.

    PubMed  Google Scholar 

  • Zeng, X-T., Hara, M., and Inagaki, C. (1994).Brain Res. 641, 167–170.

    PubMed  Google Scholar 

  • Zimniak, P., and Racker, E. (1978).J. Biol. Chem. 253, 4631–4637.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerencser, G.A., Purushotham, K.R. Reconstituted Cl pump protein: A novel ion(Cl)-motive ATPase. J Bioenerg Biomembr 28, 459–469 (1996). https://doi.org/10.1007/BF02110436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110436

Key words

Navigation