Skip to main content
Log in

Structural geomorphology of the eltanin fault system and adjacent transform faults of the Pacific-Antarctic plate boundary

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Seabeam and SeaMARC II swath-mapping surveys, with ancillary magnetic and gravity profiling, describe the fast-slipping (84–86 mm year−1) 380 km-long Heezen transform (56° S) and the 145 km-long Raitt transform (54° S), together with the youngest parts of their rise-flank fracture zones. Archived seismicity, satellite altimetry, and older geophysical traverses extend these descriptions, constrain the structural interpretations, and allow preliminary interpretations of the adjacent Tharp, Hollister, and Udintsev transforms. At Heezen transform, Pacific-Antarctic plate motion is partitioned between the principal strike-slip fault zone in a deep transform valley and a marginal zone of rifting 30–40 km north of the transform axis, where a zone of secondary Riedel shearing evolved into a belt of crustal extension following a Pliocene change in relative plate motion. Crustal extension and lithospheric rupture along this belt has opened rift valleys, allowed the eruption of high volcanic ridges, and suppressed uplift of a transverse ridge along the north side of the transform valley. The south side has a high transverse ridge that is probably a flexural response to the mass deficiency of the valley; it subsides and vanishes along the eastern part of the valley, which has been infilled with recent volcanism. At the eastern risecrest intersection is another uplift of old lithosphere, an intersection high raised by transfer of heat from a curved and transform-parallel overshot ridge that prolongs the axial ridge of the East Pacific Rise (EPR). Tharp transform appears to be a mirror-image of Heezen transform, but with less evidence of volcanism at the marginal rifting site. Raitt transform responded differently to the Pliocene change in plate motion: a single strike-slip zone was replaced with anen echelon pair of newly oriented faults, connected by a 10 km-long mid-Raitt spreading axis which has accreted rough, obliquely lineated crust. Transverse ridges have been raised along both sides of the transform, probably in response to the mass deficiency of the strip of mid-Raitt crust and to heating at the mid-Raitt axis. The intersections of Raitt transform with the EPR crest lack long overshot ridges, but periodically have tall, narrow intersection highs probably raised mainly by intrusion across the transform into old lithosphere. Udintsev transform adjusted to the change in slip direction by segmenting like Raitt transform, but the mid-Udintsev spreading axis grew within a widened transtensional transform valley bordered on both sides by high transverse ridges. Volcanism at the intersections with the rifted crest of the Pacific-Antarctic Ridge does not infill and close off the transform valley, so the Udintsev transverse ridges extend past the intersections to become part of the rise-flank fracture zones. At faster separating parts of the Pacific-Antarctic boundary, and on most of the rest of the EPR, fracture zone structure is mainly inherited from the variable arrangement of volcanic ridges and tectonic uplifts at the risecrest intersections, rather than from structures formed at the transform valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allerton, S., 1989, Distortions, Rotations and Crustal Thinning at Ridge-transform Intersections,Nature 340, 626–628.

    Google Scholar 

  • Auzende, J. M., Bideau, D., Bonatti, E., Cannat, M., Honnorez, J., Lagabrielle, Y., Malavielle, J., Mamaloukas-Frangoulis, V., and Mevel, C., 1989, Direct Observation of a Section through Slow-spreading Oceanic Crust,Nature 337, 726–729.

    Google Scholar 

  • Barth, G. A., Kastens, K. A., and Klein, E. M., 1994, The Origin of Bathymetric Highs at Ridge-transform Intersections: A Multidisciplinary Case Study at the Clipperton Fracture Zone,Mar, Geophys. Res. 16, 1–50.

    Google Scholar 

  • Bonatti, E. and Honnorez, J., 1976, Sections of the Earth's Crust in the Equatorial Atlantic,J. Geophys. Res. 81, 4104–4116.

    Google Scholar 

  • Bonatti, E., 1978, Vertical Tectonism in Oceanic Fracture Zones,Earth & Plan. Sci. Letts. 37, 369–379.

    Google Scholar 

  • Bonatti, E. and Chermak, A., 1981, Formerly Emerging Crustal Blocks in the Equatorial Atlantic,Tectonophysics 72, 165–180.

    Google Scholar 

  • Bonte, P., Labeyrie, L. D., Dudley, W. C., Blanc, P. L., Berthois, L., Hekinian, R., and Duplessy, J. C., 1982, Morphology and Tectonics of the Romanche Transform Fault: High-resolution Mapping and Precision Sampling of the Northern Slope,Oceanologica Acta 5, 235–240.

    Google Scholar 

  • Cande, S. C., Herron, E. M., and Hall, B. R., 1982, The Early Cenozoic Tectonic History of the Southeast Pacific,Earth and Planet. Sci. Letts. 57, 63–74.

    Google Scholar 

  • Cande, S. C., LaBrecque, J. L., and Haxy, W. F., 1988, Plate Kinematics of the South Atlantic: Chron c34 to Present,J. G. R. 93, 13479–13492.

    Google Scholar 

  • Carbotte, S. and Macdonald, K. C., 1992, East Pacific Rise 8°–10°30′N: Evolution of Ridge Segments and Discontinuities from SeaMARC II and Three-dimensional Magnetic Studies,J. Geophys. Res. 97, 6959–6982.

    Google Scholar 

  • Caress, D. W., Menard, H. W., and Hey, R. N., 1988, Eocene Reorganization of the Pacific-Farallon Spreading Center North of the Mendocino Fracture Zone,J. Geophys. Res. 93, 2813–2838.

    Google Scholar 

  • Chen, Y., 1989, A Mechanical Model for the Inside Corner Uplift at a Ridge-transform Intersection,J. Geophys. Res. 94, 9275–9282.

    Google Scholar 

  • Collette, B. J., 1986, Fracture Zones in the North Atlantic: Morphology and a Model,J. Geol. Soc. London 143, 763–774.

    Google Scholar 

  • Cormier, M. H., Detrick, R. S., and Purdy, G. M., 1984, Anomalously Thin Crust in Oceanic Fracture Zones: New Seismic Constraints from the Kane Fracture Zone,J. Geophys. Res. 89, 10249–10266.

    Google Scholar 

  • de Mets, C., Gordon, R. G., Argus, D. F., and Stein, S., 1990, Current Plate Motions,Geophys. J. Ints. 101, 425–478.

    Google Scholar 

  • de Moustier, C., Lonsdale, P., and Shor, A. N., 1990, Simultaneous Operation of the Sea Beam Multibeam Echo-sounder and the SeaMARC II Bathymetric Sidescan Sonar,IEEE J. Ocean Eng. 15, 84–94.

    Google Scholar 

  • Dick, H. J. B., Schouten, H., Meyer, P. S., Gallo D. G., Berg, H., Tyce, R., Patriat, P., Johnson, K. T. M., Snow, J., and Fisher, A., 1991, Tectonic Evolution of the Atlantis II Fracture Zone,Proc. Ocean Drilling Program, Scientific Results 118, 359–398.

    Google Scholar 

  • Dziewonski, A. M., Friedman, A., Giardini, D., and Woodhouse, J. H., 1983, Global Seismicity of 1982: Centroidmoment Tensor Solutions for 308 Earthquakes,Phys. Earth Planet. Ints. 33, 76–90.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., and Woodhouse, J. H., 1985, Centroid-moment Tensor Solutions for July–September, 1984,Phys. Earth Planet. Ints. 38, 203–213.

    Google Scholar 

  • Dziewonski, A. M., Ekstrom, G., Franzen, J. E., and Woodhouse, J. H., 1988a, Global Seismicity of 1980: Centroidmoment Tensor Solutions for 515 Earthquakes,Phys. Earth Planet. Ints. 50, 127–154.

    Google Scholar 

  • Dziewonski, A. M., Ekstrom, G., Franzen, J. E., and Woodhouse, J. H., 1988b, Global Seismicity of 1981: Centroidmoment Tensor Solutions for 542 Earthquakes,Phys. Earth Planet. Ints. 50, 155–182.

    Google Scholar 

  • Dziewonski, A. M., Ekstrom, G., Franzen, J. E., and Woodhouse, J. H., 1988c, Global Seismicity of 1982 and 1983: Additional Centroid-moment Tensor Solutions for 553 Earthquakes,Phys. Earth Planet. Ints. 53, 17–45.

    Google Scholar 

  • Forsyth, D. W., 1991, Comment on “A Quantitative Study of the Axial Topography of the Mid-Atlantic Ridge” by A. Malinverno,J. Geophys. Res. 96, 2039–2047.

    Google Scholar 

  • Fox, P. J. and Gallo, D. G., 1984, A Tectonic Model for Ridge-Transform-Ridge Plate Boundaries: Implications for the Structure of Oceanic Lithosphere,Tectonophysics 104, 205–242.

    Google Scholar 

  • Francis, T. J. G., 1981, Serpentinization Faults and Their Role in the Tectonics of Slow Spreading Ridges,J. Geophys. Res. 86, 11616–11622.

    Google Scholar 

  • Gallo, D. G., Fox, P. J., and Macdonald, K. C., 1986, A Sea Beam Investigation of the Clipperton Transform Fault: The Morphotectonic Expression of a Fast-slipping Transform Boundary,J. Geophys. Res. 91, 3455–3467.

    Google Scholar 

  • Garmany, J., 1989, Accumulations of Melt at the Base of Young Oceanic Crust,Nature 340, 628–632.

    Google Scholar 

  • Heezen, B. C., Tharp, M, and Hollister, C. D., 1968,Illustrations of the Marine Geology of the Southern Ocean, Symposium on Antarctic Oceanography, Santiago, Chile, Sept. 13–16, 1966, Scott Polar Res. Inst., Cambridge, England, pp. 101–109.

    Google Scholar 

  • Herron, E. M., 1971, Crustal Plates and Sea Floor Spreading in the Southeastern Pacific,Am. Geophys. Union, Antarctic Research Series 15, 229–237.

    Google Scholar 

  • Madsen, J. A., Detrick, R. S., Mutter, J. C., Buhl, P., and Orcutt, J. A., 1990, A Two- and Three-dimensional Analysis of Gravity Anomalies Associated with the East Pacific Rise at 9° N and 13° N,J. Geophys. Res. 95, 4967–4987.

    Google Scholar 

  • Karson, J. A. and Dick, H. J. B., 1983, Tectonics of Ridge-transform Intersections at the Kane Fracture Zone,Mar. Geophys. Res. 6, 51–98.

    Google Scholar 

  • Kashintsev, G. L. and Frikh-Khar, D. I., 1978, Structure of the Oceanic Crust in the Eltanin Fault Zone (Pacific Ocean) Based on Petrographic Data (translated from Russian),Oceanology 18, 39–42.

    Google Scholar 

  • Kastens, K. A., Ryan, W. B. F., and Fox, P. J., 1986, Structural and Volcanic Expression of a Fast Slipping Ridge-Transform-Ridge Plate Boundary: SeaMARC I and Photographic surveys at the Clipperton Transform Fault,J. Geophys. Res. 91, 3469–3488.

    Google Scholar 

  • Lonsdale, P., 1986, Tectonic and Magmatic Ridges in the Eltanin Fault System, South Pacific,Mar. Geophys. Res. 8, 203–242.

    Google Scholar 

  • Lonsdale, P., 1989, Segmentation of the Pacific-Nazca Spreading Center, 1° N–20° S,J. Geophys. Res. 94, 12197–12225.

    Google Scholar 

  • Lonsdale, P., 1991, Structural Patterns of the Pacific Floor Offshore of Peninsular California,AAPG Memoir 47, 87–125.

    Google Scholar 

  • Macdonald, K. C., Sempere, J. C., and Fox, P. J., 1984, East Pacific Rise from Siqueiros to Orozco Fracture Zones: Along-strike Continuity of Axial Neovolcanic Zone and Structure and Evolution of Overlapping Spreading Centers,J. Geophys. Res. 89, 6049–6069.

    Google Scholar 

  • Macdonald, K. C., Castillo, D. A., Miller, S. P., Kastens, K. A., Bonatti, E., and Fox, P. J., 1986, Deep Tow Studies of the Vema Fracture Zone, 1. Tectonics of a Major Slow-slipping Transform Fault and its Intersection with the Mid-Atlantic Ridge,J. Geophys. Res. 91, 3334–3354.

    Google Scholar 

  • Madsen, J. A., Forsyth, D. W., and Detrick, R. S., 1984, A New Isostatic Model for the East Pacific Rise Crest,J. Geophys. Res. 89, 9997–10015.

    Google Scholar 

  • Mayes, C. L., Lawver, L. A., and Sandwell, D. T., 1990, Tectonic History and New Isochron Chart of the South Pacific,J. Geophys. Res. 95, 8543–8567.

    Google Scholar 

  • Menard, H. W., and Fisher, R. L., 1958, Clipperton Fracture Zone in the Northeastern Equatorial Pacific,J. Geol. 66, 239–253.

    Google Scholar 

  • Menard, H. W., 1959, Geology of the Pacific Sea Floor,Experimentia 15, 205–213.

    Google Scholar 

  • Menard, H. W., 1965, The World-wide Oceanic Rise-ridge System,Phil. Trans. Royal Soc. (London) 258, 109–122.

    Google Scholar 

  • Menard, H. W. and T. Atwater, 1969, Origin of Fracture Zone Topography,Nature 222, 1037–1040.

    Google Scholar 

  • Menard, H. W., 1978, Fragmentation of the Farallon Plate by Pivoting Subduction,J. Geology 86, 99–101.

    Google Scholar 

  • Molnar, P. T., Atwater, T., Mammerickx, J., and Smith, S. M., 1975, Magnetic Anomalies, Bathymetry, and the Tectonic Evolution of the South Pacific since the Late Cretaceous,Geophys. J. Roy. Astron. Soc. 40, 383–420.

    Google Scholar 

  • Parmentier, E. M. and Haxby, W. F., 1986, Thermal Stresses in the Oceanic Lithosphere: Evidence from Geoid Anomalies at Fracture Zones,J. Geophys. Res. 91, 7193–7204.

    Google Scholar 

  • Pockalny, R. A., Detrick, R. S., and Fox, P. J., 1988, Morphology and Tectonics of the Kane Transform from Sea Beam Bathymetry Data,J. Geophys. Res. 93, 3179–3193.

    Google Scholar 

  • Sandwell, D. T., 1984a, A Detailed View of the South Pacific Geoid from Satellite Altimetry,J. Geophys. Res. 89, 1089–1104.

    Google Scholar 

  • Sandwell, D. T., 1984b, Thermomechanical Evolution of Oceanic Fracture Zones,J. Geophys. Res. 89, 11401–11413.

    Google Scholar 

  • Sandwell, D. T. and Ruiz, M. B., 1992, Along-track Gravity Anomalies from Geosat and Seasat Altimetry: GEBCO Overlays,Mar. Geophys. Res. 14, 165–205.

    Google Scholar 

  • Searle, R. C., 1983, Multiple Closely Spaced Transform Faults in Fast-slipping Fracture Zones,Geology 11, 607–610.

    Google Scholar 

  • Severinghaus, J. P. and Macdonald, K. C., 1988, High Inside Corners at Ridge-Transform Intersections,Mar. Geophys. Res. 9, 357–367.

    Google Scholar 

  • Shor, A., 1990, SeaMARC II Seafloor Mapping System: Seven Years of Pacific Research,Proceedings of the Pacific Rim 90 Congress, 12.

  • Silant'yev, S. A. and Plyusnina, L. P., 1984, P-T Conditions of Formation of Metamafic Rocks in the Heezen Fracture Zone and the Mariana Trench, Pacific Ocean,Dokl. Akad. Nauk SSSR 265, 952–955.

    Google Scholar 

  • Sleep, N. H. and Biehler, S., 1970, Topography and Tectonics at the Intersection of Fracture Zones with Central Rifts,J. Geophys. Res. 75, 2748–2752.

    Google Scholar 

  • Stewart, L. M. and Okal, E. A., 1983, Seismicity and Aseismic Slip along the Eltanin Fracture Zone,J. Geophys. Res. 88, 10495–10507.

    Google Scholar 

  • Stock, J. and Hodges, K. V., 1989, Pre-Pliocene Extension around the Gulf of California, and the Transfer of Baja California to the Pacific Plate,Tectonics 8, 99–115.

    Google Scholar 

  • Sykes, L. R., 1963, Seismicity of the South Pacific Ocean,J. Geophys. Res. 68, 5999–6006.

    Google Scholar 

  • Sykes, L. R., 1967, Mechanism of Earthquakes and Faulting on the Mid-ocean Ridges,J. Geophys. Res. 72, 2131–2153.

    Google Scholar 

  • Tamsett, D. and Searle, R., 1990, Structure of the Alula-Fartak Zone, Gulf of Aden,J. Geophys. Res. 95, 1239–1254.

    Google Scholar 

  • Tricart, P., Mascale, J, Honnorez, J, Basile, C., Villeneuve, M, and Bertrand, H., 1989, Etude Morphostructurale de la Zone de Fracture de la Romanche entre 17 et and 18° W: Premier Resultats de la Campagne Equamarge II (1988) (in French with English summary),Comptes Rendus Acad. Sci. Paris 309, 1797–1802.

    Google Scholar 

  • Vogt, P. R., 1974, Volcano Height and Plate Thickness,Earth & Plan. Scie. Letts. 23, 337–348.

    Google Scholar 

  • Watts, A. B., Weissel, J. K., Duncan, R. A., and Larson, R. L., 1988, Origin of Louisville Ridge and Its Relationship to the Eltanin Fracture Zone System,J. Geophys. Res. 93, 3051–3077.

    Google Scholar 

  • Wessel, P. and Haxby, W. F., 1990, Thermal Stresses, Differential Subsidence, and Flexure at Oceanic Fracture Zones,J. Geophys. Res. 95, 375–391.

    Google Scholar 

  • White, R. S., Detrick, R. S., Sinha, M. C., and Cormier, M. H., 1984, Anomalous Seismic Crustal Structure of Oceanic Fracture Zones,Geophys. J. Royal Astron. Soc. 79, 779–798.

    Google Scholar 

  • White, R. S., Detrick, R. S., Mutter, J. C., Buhl, P., Minshull, T. A., and Morris, E., 1990, New Seismic Images of Oceanic Crustal Structure,Geology 18, 462–465.

    Google Scholar 

  • Whitmarsh, R. B. and Laughton, A. S., 1976, A Long-range Sonar Study of the Mid-Atlantic Ridgecrest Near 37° N (FAMOUS area) and Its Tectonic Implications,Deep-Sea Res. 23, 1005–1023.

    Google Scholar 

  • Wilcox, R. E., Harding, T. P., and Seely, D. R., 1973, Basic Wrench Tectonics,AAPG Bull 57, 74–96.

    Google Scholar 

  • Wolfe, C. J., Bergman, E. A., and Solomon, S. C., 1993, Ocean Transform Earthquakes with Unusual Mechanisms or Locations: Relation to Fault Geometry and State of Stress in the Adjacent Lithosphere,J. Geophys. Res. (in press).

  • Zhivago, A. V., 1983, Morphostructure of the Heezen Fracture Zone on the Pacific Ocean Floor,Dokl. Akad. Nauk SSSR 273, 407–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonsdale, P. Structural geomorphology of the eltanin fault system and adjacent transform faults of the Pacific-Antarctic plate boundary. Mar Geophys Res 16, 105–143 (1994). https://doi.org/10.1007/BF01224756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01224756

Key words

Navigation