Skip to main content
Log in

Tikhonovs regularization method for ill-posed problems

A comparison of different methods for the determination of the regularization parameter

  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Frequently the determination of material characteristic functions, such as the molecular mass distribution of a polymeric sample or the relaxation spectrum of a viscoelastic fluid, leads to an ill-posed problem. When Tikhonov regularization is applied to such a problem the problem of an appropriate choice of the regularization parameter arises. Well-known methods to determine this parameter, such as the discrepancy principle, and a method based on the minimization of the predictive mean-square signal error are compared with a self-consistence method. Monte Carlo simulations have been carried out for the determination of the relaxation spectrum from small amplitude oscillatory shear flow data. The self-consistence method has proven to be much more robust and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morozov, V. A.: Methods for solving incorrectly posed problems. New York: Springer 1984

    Google Scholar 

  2. Groetsch, C. W.: The theory of Tikhonov regularization for Fredholm equations of the first kind. Boston: Pitman 1984

    Google Scholar 

  3. Gull, S. F.; Skilling, J.; I.E.E. Proc. 1984, 131F, 646

    Google Scholar 

  4. Provencher, S. W.: Contin (Version 2) users manual. Technical Report EMBL-DA07. Computer Physics Communications Program Library. Queen's University of Belfast, 1984

  5. Provencher, S. W.: Comput. Phys. Commun. 27 (1982) 213

    Google Scholar 

  6. Provencher, S. W.: Comput. Phys. Commun. 27 (1982) 229

    Google Scholar 

  7. Skilling, J.; Bryan, R. K.: Monthly notices of the roy. Astron. Soc. 211 (1984) 111

    Google Scholar 

  8. Vancso, G.; Tomka J.; Vancso-Polacsek, K.: Macromolecules 21 (1988) 415

    Google Scholar 

  9. Brown, W.; Johnsen, R.; Štěpánek, P., Jakeš, J. Macromolecules 21 (1988) 2859

    Google Scholar 

  10. Livesey, A. K.; Licinio, P.; Delaye, M.: J. Chem. Phys. 84 (9) (1986) 5102

    Google Scholar 

  11. Potton, J. A.; Daniell, G. J.; Rainford, B. D.: J. Appl. Crystallogr. 21 (1988) 663

    Google Scholar 

  12. Davies, A. R.; Andersson, R. S.; J. Austr. Mathm. Soc. 28B (1986) 114

    Google Scholar 

  13. Whaba, G.: In Solution methods for integral equations. Golberg, M. A., Ed.: New York: Plenum Press 1978

    Google Scholar 

  14. Press, W. H. Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.: Numerical recipes. Cambridge University Press. Cambridge 1986

    Google Scholar 

  15. Honerkamp, J.; Weese, J.: Macromolecules 22 (1989) 4372

    Google Scholar 

  16. Mallows, C. L.: Technometrics 15 (1973) 661

    Google Scholar 

  17. Ferry, J. D.: Viscoelastic properties of polymers. New York: Wiley & Sons 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honerkamp, J., Weese, J. Tikhonovs regularization method for ill-posed problems. Continuum Mech. Thermodyn 2, 17–30 (1990). https://doi.org/10.1007/BF01170953

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170953

Keywords

Navigation