Skip to main content
Log in

Summary

The history of staurolite (1792-present) demonstrates how long it takes for superseded teachings to be discarded in favor of new results, witness the long estrangement of X-ray crystallographers from morphological mineralogists. The first staurolite structure was described inCcmm (Náray-Szabó, 1929). In 1953Pierre Sauvé found, in Fannin-county material, a crystal with strikingly monoclinic morphology. Morphological analysis demanded halving the oldc length, confirmed theC centering, but invalidated thec glide plane (thrice “confirmed” by X-ray diffraction!). NewOkl precession patterns revealed previously “forbidden” reflections, and oblique optical extinction on (010) confirmed the monoclinic character.Ccmm survives as pseudo-space-group,a andc becoming directions of pseudo-symmetry and entailing potential intimate “twinning by lattice quasi-symmetry (ω=0.0°,n=1)”. In 1958Náray-Szabó using formula Fe4Al18Si8O46(OH)2 revised his orthorhombic structure inC2/m. Smith(1968)met great refinement difficulties in assigning atoms to crystallographic sites as partial occupancy or substitution solid-solution (or both) affect every Wyckoff position. Later observations on compositional sector-zoning cast doubt on the specimen monocrystallinity. Neutron diffraction and nuclear magnetic resonance confirmed Smith's conjecture in locating OH groups in O(1A) and O(1 B) positions. Attempts to write a simple structural-chemical formula have been unsuccessful. Dimorphism is not excluded: two monoclinic positions, differing only in occupancy, may combine into a single orthorhombic one for equal occupancies by a given solid solution. Many more refined structures, on different compositions, may be needed before any hope of writing a general formula can be entertained. Just now the problem is hopelessly underdetermined, as shown by the parameters in the structural formula

$$\left( {\mathop {Si_{1 - l} Al_l }\limits^{Si} } \right)_8^{iv} \left( {\mathop {\mathop {Al_{1 - m - \in } M_m \square _ \in }\limits^{Al(1A,1B)A1(2)} }\limits_{2 \times 4 + 8 = } } \right)_{16}^{vi} \left( {\mathop {M_{1 - n - \zeta } Al_n \square _\zeta }\limits^M } \right)_4^{iv} \left( {\mathop {\mathop {\square _{1 - p - q} Al_p M_q }\limits^{Al(3A,3B)} }\limits_{2 \times 2 = } } \right)_4^{vi} \left( {\mathop {\mathop {\square _{1 - r} M_r }\limits^{U(1,2)} }\limits_{2 \times 2 = } } \right)_4^{vi} \left( {\mathop {\mathop {O_{48 - z} (OH)_z }\limits^{\mathop {O(2A,2B,3,4,5)}\limits^{O(1A,1B)} } }\limits_{\frac{{2 \times 4 + 5 \times 8 = }}{{48}}} } \right)_1 $$

when M=Fe, Mg, Zn, Ti, Mn.

Résumé

L'histoire de la staurotide (1972–1982) montre qu'il faut longtemps avant que les résultats récemment acquis ne supplantent les enseignements dépassés, ainsi qu'en témoigne la longue période d'aliénation entre minéralogistes-morphologistes et cristallographes-diffractionistes. La première structure de la staurotide fut décrite dans le groupeCcmm (Náray-Szabó, 1929). En 1953,Pierre Sauvé trouva, dans une récolte de Fannin county, un cristal de morphologie typiquement monoclinique, dont l'analyse morphologique démontra la nécessité de diviser par 2 l'ancien rapportc/b, confirma le centrageC de la maille, mais infirma le miroir glisseurc (“confirmé” par trois fois en diffraction X!). De nouveaux diagrammes de précession révélèrent des réflexionsOkl précédemment “interdites”; optiquement, l'extinction oblique sur (010) étaya le caractère monoclinique.Ccmm survit en tant que pseudo-groupe,a etc devenant des directions de pseudo-symétrie qui rendent désormais possible un maclage intime par pseudosymétrie du réseau (obliquité ω=0.0°, indicen=1). En 1958,Náray-Szabó, utilisant la formule Fe4Al18Si8O46(OH)2, adapta sa strúcture de 1929 au groupeC2/m. Smith (1968), qui en fit l'affinement, rencontra des difficultés insurmontables, vu que des lacunes ou des solutions solides de substitution (ou les deux) affectent chaque position de Wyckoff. Des observations subséquentes sur la zonation par secteurs de compositions différentes mettent en doute la monocristallinité des spécimens. Une conjecture deSmith se trouve vérifiée par diffraction neutronique et résonnance magnétique nucléaire, techniques grâce auxquelles des groupements OH ont été localisés en O(1A) et O(1B). Diverses tentatives de composer une formule chimique structurale simple sont restées vaines. Le dimorphisme n'est pas exclu: deux positions de Wyckoff monocliniques, ne différant que par le nombre de lacunes, pourraient, en cas de nombres égaux, fusionner en une position orthorhombique unique occupée par une même solution solide. Il reste à affiner un grand nombre de structures de compositions différentes, avant qu'on ne puisse espérer écrire la formule désirée. Pour le moment, le problème reste largement indéterminé, comme le montrent les paramètres de la formule structurale (voir texte anglais).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cardoso, G. M., 1928: Röntgenographische Feinbaustudien am Cyanit und Staurolith. Z. Krist.66, 485–487.

    Google Scholar 

  • Cesàro, G., 1887: Recherches sur la position relative des centres de gravité moléculaires dans les assemblages cristallins. Bull. Soc. franç. Min.10, 229–263. See p. 246.

    Google Scholar 

  • Currier, L. W., 1934: Notes on staurolite and associated minerals from schist at Gassetts, Vermont. Amer. Min.19, 335–339.

    Google Scholar 

  • Deer, W. A., Howie, R. A., Zussman, J., 1966: An Introduction to the Rock-forming Minerals. New York: Wiley. See pp. 49 and 51.

    Google Scholar 

  • Delamétherie, J. C., 1792: Sciagraphie. 2 vols. Paris, France. See vol. 1, p. 298.

    Google Scholar 

  • Dollase, W. A., Hollister, L. S., 1969: X-ray evidence of ordering differences between sectors of a single staurolite crystal. Geol. Soc. Am. meeting, Atlantic City, N. J., Abstracts, Part 7, 268–270.

    Google Scholar 

  • Donnay, Gabrielle, Allmann, R., 1970: How to recognize O=, OH and H2 O incrystal structures determined by X-rays. Amer. Min.55, 1003–1015.

    Google Scholar 

  • —,Donnay, J. D. H., 1954: An integrating precession technique. Acta Cryst.7, 619.

    Google Scholar 

  • ——,Hurst, V. J., 1955: Precession goniometry to identify neighboring twins. Acta Cryst.8, 507–509.

    Google Scholar 

  • Donnay, J. D. H., Barth, T. F. W., Tunell, G., 1934: Various modes of attack in crystallographic investigations. Amer. Min.19, 437–458.

    Google Scholar 

  • Dowty, E., 1972: Site distribution of iron staurolite. Earth and Planet. Sci. Letters15, 72–74.

    Google Scholar 

  • Frondel, C., 1940: Oriented inclusions of staurolite, zircon and garnet in muscovite. Skating crystals and their significance. Amer. Min.25, 69–87. See pp. 70–72 and Fig. 3.

    Google Scholar 

  • Gottfried, C., 1927: Die Raumgruppe des Stauroliths. Z. Krist.66, 103–107.

    Google Scholar 

  • Grambling, J. A., 1981: Kyanite, andalusite, sillimanite, and related mineral assemblages. Amer. Min.66, 702–722. See pp. 711–712 and Table 7.

    Google Scholar 

  • Griffen, D. T., Gosney, T. C., Phillips, W. R., 1982: The chemical formula of natural staurolite. Amer. Min.67, 292–297.

    Google Scholar 

  • Gruner, J. W., 1931: Structure of some silicates. Amer. Min.16, 437–454. See p. 445.

    Google Scholar 

  • Hanisch, K., 1966: Zur Kenntnis der Kristallstruktur von Staurolith. N. Jb. Min., Mh.1966, 362–366.

    Google Scholar 

  • Haüy, R. J., 1797: Staurotide. J. Mines5, 545.

    Google Scholar 

  • Hollister, L. S., 1970: Origin, mechanism, and consequences of compositional sector-zoning in staurolite. Amer. Min.55, 742–766. See p. 757.

    Google Scholar 

  • Hörner, F., 1915: Beiträge zur Kenntnis des Stauroliths. lnaugural Diss., Heidelberg.

  • Husst, V. J., Donnay, J. D. H., Donnay, Gabrielle, 1956: Staurolite twinning. Min. Mag.31 145–163.

    Google Scholar 

  • Juurinen, A., 1956: Composition and properties of staurolite. Ann. Acad. Sci. Fenn., (A) III Geol.47, 1–53.

    Google Scholar 

  • Mallard, E., 1879: Traité de Cristallographie. Vol. 1. Paris: Dunod. See p. 180, footnote.

    Google Scholar 

  • Moore, C. H., Jr., 1937: The staurolite area of Patrick and Henry counties, Virginia. Amer. Min.22, 990–996.

    Google Scholar 

  • Náray-Szabó, St., 1929: The structure of staurolite. Z. Krist.71, 103–116.

    Google Scholar 

  • Náray-Szabó, I., Sasvari, K., 1958: On the structure of staurolite, HFe2Al9Si4O24. Acta Cryst.11, 862–865.

    Google Scholar 

  • Palache, C., Berman, H., Frondel, C., 1944: The System of Mineralogy of J.D. Dana, 7th ed., Vol. 1. New York: Wiley.

    Google Scholar 

  • Phillips, W. R., Griffen, D. T., 1981: Optical Mineralogy. San Francisco: Freeman. See p. 137.

    Google Scholar 

  • Pigage, L. C., Greenwood, H. J., 1982: Internally consistent estimates of pressure and temperature, the staurolite problem. Amer. J. Sci.282, 943–969.

    Google Scholar 

  • Roberts, J. K., 1934: Virginia staurolite as gems. Amer. Min.19, 549–552.

    Google Scholar 

  • Schiebold, E., Cardoso, G. M., 1930: Die Struktur des Stauroliths und seine Verzwillingungen. Z. Krist.73, 95–96.

    Google Scholar 

  • Skerl, A. C., Bannister, F. A., Groves, A. W., 1934: Lusakite, a cobalt-bearing silicate from Northern Rhodesia. Min. Mag.23, 598–606. (Lusakite was described inCcmm. Erratum in Strukturberich III:CmCm.)

    Google Scholar 

  • Sloan, R., 1982: The Royalton staurolite outcrop. Rocks and Minerals57, 123.

    Google Scholar 

  • Smith, J. V., 1968: The crystal structure of staurolite. Amer. Min.53, 1139–1155; erratum,ibid. 54, 571, 1969. [Other errata: In Abstract, line 4 up, instead of twinning “on (010)” read “on (001) or (100)”:(010), monoclinic mirror, cannot be twin plane. Under Introduction, line 4, note that theJuurinen formula does not balance with all Fe ferrous and even less with half of it ferric.]

    Google Scholar 

  • Takéuchi, Y., Aikawa, N., Yamamoto, T., 1972: The hydrogen locations and chemical composition of staurolite. Z. Krist.136, 1–22.

    Google Scholar 

  • Ungemach, H., 1934: Sur le couple chalcostibite-emplectite et sur la concordance entre dimensions de la maille élémentaire et paramètres cristallographiques. Bull. Soc. franç. Min.57, 186–207. See p. 204 and pp. 205–207.

    Google Scholar 

  • Yardley, B. W. D., 1981: A note on the composition and stability of Fe-staurolite. N. Jb. Min., Mh.1981, 127–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr.Josef Zemann on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnay, J.D.H., Donnay, G. The staurolite story. TMPM Tschermaks Petr. Mitt. 31, 1–15 (1983). https://doi.org/10.1007/BF01084757

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084757

Keywords

Navigation