Skip to main content
Log in

Capacity for energy metabolism in microvessels isolated from rat brain

  • Comment
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Numerous methods used for the isolation of brain microvessels involve procedures which disturb the structural integrity of the cells and their organelles. In the present study, analysis of the adenylate energy charge and content as well as the incorporation of adenosine derivatives in isolated rat brain microvessels indicated a lesion of the mechanisms of energy production. The results show that experiments on isolated microvessels prepared by a mechanical homogenization exerting shear forces should be interpretated with caution when the rate of energy metabolism is a significant factor in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brendel, K., Meezan, E., andCarlson, E. C. 1974. Isolated brain microvessels: A purified metabolically active preparation from bovine cerebral cortex. Science. 185:953–955.

    Google Scholar 

  2. Goldstein, G. W., Wolinsky, J. S., Csejey, J., andDiamond, I. 1975. Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25:715–717.

    Google Scholar 

  3. Joo, F., andKarnushina, I. 1973. A procedure for the isolation of capillaries from rat brain. Cytobios. 8:41–48.

    Google Scholar 

  4. Kolber, A. R., Bagnell, C. R., Krigman, M. R., Hayward, J., andMorel, P. 1979. Transport of sugars into microvessels isolated from rat brain. A model for the blood-brain barrier. J. Neurochem. 33:419–432.

    Google Scholar 

  5. Williams, S. K., Gillis, J. F., Matthews, M. A., Wagner, R. C., andBitensky, M. W. 1980. Isolation and characterization of brain endothelial cells: Morphology and enzymatic activity. J. Neurochem. 35:374–381.

    Google Scholar 

  6. Berry, M. N. 1974. High yield preparation of morphologically intact isolated parenchymal cells from rat liver. Pages 625–732,in Fleischer, S., andPacker, L. in Enzymology, vol 32, Academic Press, New York.

    Google Scholar 

  7. Henderson, F. J., Lowe, J. K., andBarankiewicz, J. 1977. Purine and pyrimidine metabolism: pathways pitfalls and perturbations. Pages 3–15,in Purine and pyrimidine metabolism. Ciba Foundation Symposium 48, Elsevier.

  8. Atkinson, D. E. 1968. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 7:4030–4044.

    Google Scholar 

  9. Lund, P., Cornell, N. W., andKrebs, H. A. 1975. Effect of adenosine on the adenine nucleotide content and metabolism of hepatocytes. Biochem. J. 152:593–599.

    Google Scholar 

  10. Lowry, O. H., andPassonneau, J. V. 1972. Pages 147–153,in A flexible system of enzymatic analysis. Academic Press, New York.

    Google Scholar 

  11. Warton, D. S., andTzagoloff, A. 1967. Cytochrome oxidase from beef heart mitochondria. Pages 245–250,in Eastabrook, I. R. W., andPullman, N. E. (eds.), Methods in Enzymology, vol 10, Academic Press, New York.

    Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  13. De Belleroche, J. S., andBradford, H. F. 1972. Metabolism of beds of mammalian cortical synaptosomes: Responses to depolarising influences. J. Neurochem. 19:585–602.

    Google Scholar 

  14. Kuroda, Y., andMcIlwain, H. 1974. Uptake and release of [14C]adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system. J. Neurochem. 22:691–699.

    Google Scholar 

  15. Honegger, U. E., Bogdanov, S. S., andBally, P. P. 1977. Quantitative extraction, separation and recovery of adenine derived radioactivity in bases, nucleosides and nucleotides from blood platelets using PEI-cellulose thin layer chromatography. Anal. Biochem. 82:268–292.

    Google Scholar 

  16. Nordstrom, C. H., Rehncrona, S., Siesjo, B. K., andWesterber, E. 1977. Adenosine in rat cerebral cortex: its determination, normal values and correlation to AMP and cyclic AMP during shortlasting ischemia. Acta Physiol. Scand. 101:63–71.

    Google Scholar 

  17. Wu, P. H., andPhillis, J. W. 1982. Uptake of adenosine by isolated rat brain capillaries. J. Neurochem. 38:687–690.

    Google Scholar 

  18. Barberis, C., Minn, A., andGayet, J. 1981. Adenosine transport in guinea-pig synaptosomes. J. Neurochem. 36:347–354.

    Google Scholar 

  19. Bender, A. S., Wu, P. H., andPhillis, J. W. 1981. Some biochemical properties of the rapid adenosine uptake system in rat brain synaptosomes. J. Neurochem. 37:1282–1290.

    Google Scholar 

  20. Cornford, E. M., andOldendorf, W. H. 1975. Independent blood-brain barrier transport systems for nucleotide acid precursors. Biochim. Biophys. Acta 394:211–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasbennes, F., Gayet, J. Capacity for energy metabolism in microvessels isolated from rat brain. Neurochem Res 9, 1–10 (1984). https://doi.org/10.1007/BF00967654

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967654

Keywords

Navigation