Skip to main content
Log in

Anaerobic digestion and wastewater treatment systems

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Upflow Anaerobic Sludge Bed (UASB) wastewater (pre-)treatment systems represent a proven sustainable technology for a wide range of very different industrial effluents, including those containing toxic/inhibitory compounds. The process is also feasible for treatment of domestic wastewater with temperatures as low as 14–16° C and likely even lower. Compared to conventional aerobic treatment systems the anaerobic treatment process merely offers advantages. This especially is true for the rate of start-up. The available insight in anaerobic sludge immobilization (i.e. granulation) and growth of granular anaerobic sludge in many respects suffices for practice. In anaerobic treatment the immobilization of balanced microbial communities is essential, because the concentration of intermediates then can be kept sufficiently low.

So far ignored factors like the death and decay rate of organisms are of eminent importance for the quality of immobilized anaerobic sludge. Taking these factors into account, it can be shown that there does not exist any need for ‘phase separation’ when treating non- or slightly acidified wastewaters. Phase separation even is detrimental in case the acidogenic organisms are not removed from the effluent of the acidogenic reactor, because they deteriorate the settleability of granular sludge and also negatively affect the formation and growth of granular sludge. The growing insight in the role of factors like nutrients and trace elements, the effect of metabolic intermediates and end products opens excellent prospects for process control, e.g. for the anaerobic treatment of wastewaters containing mainly methanol.

Anaerobic wastewater treatment can also profitably be applied in the thermophilic and psychrophilic temperature range. Moreover, thermophilic anaerobic sludge can be used under mesophilic conditions.

The Expanded Granular Sludge Bed (EGSB) system particularly offers big practical potentials, e.g. for very low strength wastewaters (COD ≪ 1 g/l) and at temperatures as low as 10° C. In EGSB-systems virtually all the retained sludge is employed, while compared to UASB-systems also a substantially bigger fraction of the immobilized organisms (inside the granules) participates in the process, because an extraordinary high substrate affinity prevails in these systems. It looks necessary to reconsider theories for mass transfer in immobilized anaerobic biomass.

Instead of phasing the digestion process, staging of the anaerobic reactors should be applied. In this way mixing up of the sludge can be significantly reduced and a plug flow is promoted. A staged process will provide a higher treatment efficiency and a higher process stability. This especially applies for thermophilic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadun FR (1994) Ultrafiltration membrane separation for anaerobic wastewater treatment. Preprints Seventh International Symposium on Anaerobic Digestion (pp 560–566) Cape Town, 23–27 January, South Africa

  • Ahring BK & Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl. Environ. Microbiol. 54: 2393–2397

    Google Scholar 

  • Alphenaar PA, Van Berkel WJH, Lettinga PA & Perez MC (1992) Determination of the permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Appl. Microbiol. Biotechnol. 36: 795–799

    Google Scholar 

  • Alphenaar PA, Lettinga G & Perez MC (1993a) The influence of substrate transport limitation the porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biotechnol. 39: 276–280

    Google Scholar 

  • Alphenaar PA, Lettinga G & Visser A (1993b) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating waste water with a high sulphate content. Biores. Technol. 43: 249–258

    Google Scholar 

  • Alphenaar PA (1994) Anaerobic granular sludge: Characterization and factors affecting its performance. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Arcand Y, Chavaric C & Guiot S (1994) Dynamic modelling of the population distribution in the anaerobic granular biofilm. Reprints Seventh International Symposium on Anaerobic Digestion (pp 44–53) Cape Town, 23–27 January, South Africa

  • Archer DB (1985) Uncoupling of methanogenesis from growth ifMethanosarcina barkeri by phosphate limitation. Appl. Environ. Microbiol. 50: 1233–1237

    Google Scholar 

  • Beeftink HH & Staugaard P (1986) Structure and dynamics of anaerobic bacterial aggregates in a gas-lift reactor. Appl. Environ. Microbiol. 52: 1139–1146

    Google Scholar 

  • Beeftink HH (1987) Anaerobic bacterial aggregates. Ph.D. Thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Binot RA, Naveau HP & Nyns EJ (1981) Biomethanation of soluble organic residues by immobilized fluidized cells. In: Hughes DE, Stafford DA, Wheatley BI, Baaeder W, Lettinga G, Nyns EJ, Verstraete W & Wentworth RL (Eds) Poster presented Anaerobic Digestion Conference, 1981, Proceedings, p 366

  • Binot BA, Bol T, Naveau HT & Nyns EJ (1983) Biomethanation by immobilized fluidized cells. Wat. Sci. Technol. 15

  • Blaut M, Fiebig K, Gottschalk G & Müller V (1985) Sodium ions and an energized membrane required byMethanosarcinabarkeri for the oxidation of methanol to the level of formaldehyde. J. Bacteriol. 164: 95–101

    Google Scholar 

  • Bock A, Prieger-Kraft A & Schönheit P (1994) Pyruvate, a novel substrate for growth and methane formation inMethanosarcina barkeri. Arch. Microbiol. 161: 33–46

    Google Scholar 

  • Breure AM & Van Andel JG (1984) Hydrolysis and acidogenic fermentation of a protein, gelatin, in an anaerobic continuous culture. Appl. Microbiol. Biotechnol. 20: 40–45

    Google Scholar 

  • Breure AM, Van Andel JG, Burger-Wiersma T, Guijt J & Verkuijlen J (1985) Hydrolysis and acidogenic fermentation under anaerobic conditions in a laboratory scale upflow reactor. Appl. Microbiol. Biotechnol. 21: 50–54

    Google Scholar 

  • Breure AM (1986) Hydrolysis and acidogenic fermentation and carbohydrates in anaerobic waste water treatment. Ph.D. Thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Cail R & Barford JP (1985) Thermophilic semi-continuous anaerobic digestion of palm oil mill effluent. Agric. Wastes 13: 295–304

    Google Scholar 

  • Chin KK & Wong KK (1983) Thermophilic anaerobic digestion of palm oil mill effluent. Wat. Res. 17: 993–995

    Google Scholar 

  • Cohen A, Van Andel JG, Van Deursen A & Zoetemeyer RJ (1979) Anaerobic digestion of glucose with separated acid production and methane formation. Wat. Res. 16: 571–580

    Google Scholar 

  • Cohen A, Van Andel JG, Breure AM & Van Deursen A (1980) Influence of phase separation on the anaerobic digestion of glucose. I. Maximum COD-turnover rate during continuous operation. Wat. Res. 14: 1439–1448

    Google Scholar 

  • Cohen A, Breure AM, Van Andel JG & Van Deursen A (1982) Influence of phase separation on the anaerobic digestion of glucose. II. Stability and kinetic responses to shock loadings. Wat. Res. 16: 449–455

    Google Scholar 

  • Cohen A, Breure AM, Schmedding DJM, Zoetemeyer RJ & Van Andel JG (1985) Significance of partial pre-acidification of glucose for methanogenesis in an anaerobic digestion process. Appl. Microbiol. Biotechnol. 21: 404–408

    Google Scholar 

  • De Man AWA, Van der Last ARM & Lettinga G (1988) The use of EGSB and UASB anaerobic systems for low strength soluble and complex wastewaters at temperatures ranging from 8° C to 30° C. In: Hall ER & Hobson PN (Eds) Proceedings 5th IAWRC International Symposium on Anaerobic Digestion (pp 197–211) Bologna, 22–26 May

  • De Zeeuw WJ (1987) Granular sludge in UASB-reactors. In: Granular Anaerobic Sludge; Microbiology and Technology (pp 132–146) Proceedings of the GASMAT-workshop, 25–27 October, Lunteren

  • -- (1982) Formation of granular sludge during anaerobic treatment of wastewater from a rendering plant. Internal report, Department of Water Pollution Control, Agricultural University, Wageningen, The Netherlands (in Dutch)

  • Diekert G, Konheiser U, Piechulla K & Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J. Bacteriol. 148: 459–464

    Google Scholar 

  • Dolfing J (1987) Microbiological aspects of granular methanogenic sludge. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Easty DB, Borchardt G & Wabers A (1978) Wood-derived toxic compounds. TAPPI J. 61: 57–60

    Google Scholar 

  • Ehlinger F (1994) Anaerobic biological fluidized beds: experiences in France. Preprints Seventh International Symposium on Anaerobic Digestion (pp 315–323) Cape Town, 23–27 January, South Africa

  • Ely SR & Olsen GP (1989) Process for treatment of wastewater. US Patent 4,826,600, p 10

  • Fang HHP, Chui HK & Li YY (1994) Microbial structure and activity of UASB-granules treating different wastewaters. Preprints Seventh International Symposium on Anaerobic Digestion (pp 80–99) Cape Town, 23–27 January, South Africa

  • Fernandez N & Forster CF (1993) A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste. Bioresource Technol. 45: 223–227

    Google Scholar 

  • Field JA, Lettinga G & De Man AWA (1987) The methanogenic toxicity and anaerobic degradability of potato starch waste water phenologic amino acids. Biol. Wastes 21: 37–54

    Google Scholar 

  • Field JA, Habets LHA, Lettinga G, Leyendeckers MJH & Sierra-Alvarez R (1988) The methanogenic toxicity of bark tannins and the anaerobic biodegradability of water soluble bark matter. Wat. Sci. Tech. 20 (1): 219–240

    Google Scholar 

  • Field JA, Habets LHA & Lettinga G (1990a) Measurement of low molecular weight tannins: Indicators of methanogenic toxic tannins. J. Fermen. Bioengin. 69: 148–153

    Google Scholar 

  • Field JA, Sierra-Alvarez R & Lettinga G (1990b) Oxidative detoxification of aqueous bark extracts. Part II: Alternative methods. J. Chem. Tech. Biotechnol. 49: 35–53

    Google Scholar 

  • Field JA, Habets LHA, Lettinga G, Leyendeckers MJH & Sierra-Alvarez R (1991) Continuous anaerobic treatment of autoxidized bark extracts in laboratory-scale columns. Biotechnol. Bioengin. 37: 247–255

    Google Scholar 

  • Field JA & Lettinga G (1987) The methanogenic toxicity and anaerobic degradation of a hydrolyzable tannin. Wat. Res. 21 (3): 367–374

    Google Scholar 

  • —— (1988) The role of phenolic and humic components in anaerobic digestion processes. In: Wise DL (Ed.) Biotreatment Systems (Vol. II, pp 95–123) CRC Press, Inc., Boca Raton, USA

    Google Scholar 

  • —— (1990) Oxidative detoxification of aqueous bark extracts. Part I: Autoxidation. J. Chem. Tech. Biotechnol. 49: 15–33

    Google Scholar 

  • —— (1991) Treatment and detoxification of aqueous spruce bark extracts byAspergillus niger. Wat. Sci. Technol. 24: 127–137

    Google Scholar 

  • Florencio L, Field JA, Jenicek P & Lettinga G (1993a) Effect of cobalt on anaerobic degradation of methanol. J. Ferment. Bioeng. 75: 368–374

    Google Scholar 

  • Florencio L, Field JA, Van Langerak A, Lettinga G & Nozhevnikova A (1993b) Acidophilic degradation of methanol by a methanogenic enrichment culture. FEMS Microbiol. Lett. 109: 1–6

    Google Scholar 

  • Florencio L, Field JA & Lettinga G (1994) The importance of cobalt for individual trophic groups in an anaerobic methanol degrading consortium. Appl. Environ. Microbiol. 60: 227–234

    Google Scholar 

  • Florencio L (1994) The fate of methanol in anaerobic bioreactors. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Garber WF, Colbaugh GT, Ohara JE & Raksit SK (1975) Thermophilic digestion at the Hyperion treatment plant. J. Wat. Poll. Contr. Fed. 47: 950–961

    Google Scholar 

  • Grotenhuis JTC (1992) Structure and stability of methanogenic granular sludge. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Grotenhuis JTC, Van Lammeren AAM, Plugge CM, Smit M, Stams AJM, Xu Yansheng & Zehnder AJB (1991) Bacteriological compounds and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57: 1942–1949

    Google Scholar 

  • Guiot SR, Van der Berg L & Kennedy KJ (1986) Comparison of the upflow anaerobic sludge blanket and sludge bed filter concepts. EWPCA-Conf., Amsterdam, p 533

    Google Scholar 

  • Guyot JP, Macarie H & Noyola A (1990) Anaerobic digestion of a petrochemical process using the UASB-process. Appl. Biochem. Biotech. 24/25: 579–589

    Google Scholar 

  • Habets LHA & De Vegt AL (1991) Anaerobic treatment of bleached TMP and CTMP effluent in the BIOPAQ UASB system. Wat. Sci. Tech. 24: 331–345

    Google Scholar 

  • Hanaki K, Matsuo T & Nagase M (1981) Mechanism of inhibition caused by long-chain fatty-acids in the anaerobic digestion process. Biotechnol. Bioengin. 23: 1592–1610

    Google Scholar 

  • Hanaki K, Matuso T, Nagase M & Tabata Y (1987) Evaluation of effectiveness of two-phase anaerobic digestion process degrading complex substrate. Wat. Sci. Technol. 19: 311–322

    Google Scholar 

  • Harada H, Momonoi K, Takizawa S & Yamazaki S (1994) Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics. Preprints Seventh International Symposium on Anaerobic Digestion (pp 540–549) Cape Town, 23–27 January, South Africa

  • Heijnen JJ (1983) Anaerobic waste water treatment. Proceedings of the European Symposium on Anaerobic Waste Water Treatment, 23–25 November, Noordwijkerhout, The Netherlands, pp 259–274

  • -- (1988) Large scale anaerobic aerobic treatment of complex industrial wastewater using immobilized biomass in fluid bed and air-lift suspension reactors. Preprints Verfahrenstechnik Abwasser-reinigung, GVC, Baden-Baden, 17–19 October, Band 2, pp 203–218

  • Heijnen JJ, Van Loosdrecht MCM, Mulder A & Tijhuis L (1992) Formation of biofilms in a biofilm air-lift suspension reactor. Wat. Sci. Technol. 26: 647–654

    Google Scholar 

  • Hong Yucai, Lettinga G & Willers H (1988) Use of the modified UASB for the anaerobic treatment of beet sugar molasses. Poster Papers Fifth International Symposium on Anaerobic Digestion, Bologna, 22–26 May, pp 533–539

  • Hulshoff Pol LW, Lettinga G, Velzeboer CTM & De Zeeuw WJ (1983a) Granulation in UASB reactors. Wat. Sci. Technol. 15: 291–304

    Google Scholar 

  • Hulshoff Pol LW, Dolfing J, Lettinga G, Van Straten K & De Zeeuw WJ (1983b) Pelletization of anaerobic sludge in anaerobic sludge bed reactors on sucrose containing wastewater. In: Klug MJ & Reddy CA (Eds) Current perspectives in microbial ecology (pp 636–642) Proc. 3rd Int. Symp. on Microbial Ecology, 7–12 August 1983, American Society for Microbiology, Washington, DC, USA

  • Hulshoff Pol LW & Lettinga G (1986) New technologies of anaerobic wastewater treatment. Wat. Sci. Technol. 18: 41–53

    Google Scholar 

  • Hulshoff Pol LW, Heynekamp K & Lettinga G (1987) The selection pressure as a driving force behind the granulation of granular sludge. In: Granular Anaerobic Sludge; Microbiology and Technology (pp 146–153) Proceedings of the GASMAT-Workshop, 25–27 october, 1987, Lunteren

  • Hulshoff Pol LW (1989) The phenomenon of granulation of anaerobic sludge. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Iza J, Garcia PA, Sanz I & Fdz-Polanco F (1987) Granulation results in anaerobic fluidized bed reactors. In: Granular Anaerobic Sludge; Microbiology and Technology (pp 195–202) Proceedings of the GASMAT-Workshop, 25–27 October, 1987, Lunteren

  • Iza J, Garcia PA, Hernando S, Fdz-Polanco F & Sanz I (1988) Anaerobic fluidized bed reactors (AFBR): performance and hydraulic behaviour. In: Hall ER & Hobson PN (Eds) Advances in Water Pollution Control (pp 155–165) Pergamon Press

  • Jewell WJ (1983) Anaerobic attached film expanded bed fundamentals. In: Wu YC (Ed.) Proceedings of the 1st Int. Conference on Fixed Film Biological Processes (pp 17–42) University of Pittsburg, PA

    Google Scholar 

  • Kato M, Field JA & Lettinga G (1993a) The high tolerance of methanogens in granular sludge to oxygen. Biotechnol. Bioeng. 42: 1360–1366

    Google Scholar 

  • —— (1993b) Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol. Lett. 114: 317–324

    Google Scholar 

  • Kato M (1994) The anaerobic treatment of low strength soluble wastewaters. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Klapwijk A (1978) The elimination of nitrogen from wastewater using denitrification. Ph.D. Thesis, Wageningen Agricultural University (in Dutch)

  • Komatsu T, Hanaki K & Matsuo T (1991) Prevention of lipid inhibition in anaerobic processes by introducing a two-phase system. Wat. Sci. Technol. 23: 1189–1200

    Google Scholar 

  • Kortekaas S, Doma HS, Field JA, Lettinga G & Potapenko SA (1994) Sequenced anaerobic-aerobic treatment of hemp black liquors. Wat. Sci. Technol. 29 (5/6): (in press)

  • Koster IW & Cramer A (1987) Inhibition of methanogenesis from acetate in granular sludge by long chain fatty acids. Appl. Environ. Microbiol. 53: 403–409

    Google Scholar 

  • Koster IW, Lettinga G, Rinzema A & De Vegt AL (1986) Sulfide inhibition of the methanogenic activity of granular sludge at various pH-values. Wat. Res. 20: 1561–1567

    Google Scholar 

  • Kotzé JP, Hattingh WHJ, Siebert ML, Thiel PG & Toerien DF (1969) A biological and chemical study of several anaerobic digesters. Wat. Res. 2: 195–213

    Google Scholar 

  • Lettinga G, Fohr PG & Jansen GGW (1972) Application of anaerobic digestion for the treatment of concentrated waste water H2O. 5 (22): 510- (in Dutch)

  • Lettinga G, Van der Geest AT, Hobma S & Van der Laan J (1979) Anaerobic treatment of methanolic wastes. Wat. Res. 13: 725–737

    Google Scholar 

  • Lettinga G, Hobma SW, Klapwijk A, Van Velsen AFM & De Zeeuw WJ (1980) Use of the Upflow Sludge Blanket (USB) reactor concept for biological wastewater treatment. Biotechnol. Bioengin. 22: 699–734

    Google Scholar 

  • Lettinga G, Grin P, Hobma SW, Hulshoff Pol LW, Roersma R, Sayed S, Van Velsen AFM, Wiegant W & De Zeeuw W (1983a) Upflow Blanket Processes. Proceedings Third International Symposium on Anaerobic Digestion, 14–19 August 1983 (pp 139–158) Boston, USA

  • Lettinga G, Grin P, Hobma SW, Hulshoff Pol LW, De Jong P, Roersma R & De Zeeuw WJ (1983b) Design, operation and economy of anaerobic treatment. Wat. Sci. Technol. 15: 177–195

    Google Scholar 

  • Lettinga G, Grin PC, Hobma SW, Hulshoff Pol LW, Koster IW, Rinzema A, Roersma RE, Wiegant WM & De Zeeuw WJ (1984) High-rate anaerobic wastewater treatment using the UASB-reactor under a wide range of temperature conditions. Biotechnol. Engin. Rev. 2: 253–284

    Google Scholar 

  • Lettinga G & Hulshoff Pol LW (1986) Advanced reactor design, operation and economy. Wat. Sci. Technol. 18: 99–108

    Google Scholar 

  • Lettinga G & Hulshoff Pol LW (1991) UASB process design for various types of wastewaters. Wat. Sci. Technol. 24: 87–107

    Google Scholar 

  • Lettinga G, Field JA, Van Lier JB, Rintala J & Sierra-Alvarez R (1991) Future perspectives for anaerobic treatment of forest industry wastewaters. Wat. Sci. Technol. 24 (3/4): 91–102

    Google Scholar 

  • Li A & Sutton PM (1981) Dorr-Oliver Anitron System fluidized bed technology for methane production from dairy waste. In: Proceedings. Whey Products Institute Annual Meeting, April, Chicago, Ill, USA

  • Lin DG, Mazumder TK, Nagai S & Nishio N (1989) Influence of Co2+, Ni2+ and Fe2+ on the production of tetrapyrroles byMethanosarcina barkeri. Appl. Microbiol. Biotechnol. 30: 196–200

    Google Scholar 

  • Macarie H, Guyot JP & Noyola A (1992) Anaerobic treatment of a petrochemical wastewater of a terephthalic acid plant. Wat. Sci. Technol. 25: 223–235

    Google Scholar 

  • Mah R, Baresi L & Smith M (1978) Studies on an acetate-fermenting strain ofMethanosarcina. Appl. Environ. Microbiol. 35: 1174–1184

    Google Scholar 

  • McCarty PL (1964) Anaerobic waste treatment fundamentals. Public Works, September, pp 107–112, October, pp 123–126, November, pp 91–94, December, pp 95–99

  • McCarthy PJ, Droste RL, Kennedy KJ & Landine RC (1991) Anaerobic toxicity of resin acids in chemithermomechanical pulp wastewater. In: Bell JM (Ed.) Proceedings of the 45th Industrial Waste Conference, May 8–10 (pp 435–440), Inc., Chelsea, MI

  • Mueller JC, Leach JM & Walden CC (1976) Biological detoxification of pulp and paper mill effluents. Proceedings 5th International Fermentation Symposium, Berlin

  • Murray PA & Zinder SH (1985) Nutritional requirements ofMethanosarcina sp. strain Tm-1. Appl. Environ. Microbiol. 50: 49–55

    Google Scholar 

  • Nishio N, Kakizono T, Nagai S, Silveira RG & Takemoto S (1992) Nutrient control by the gas evolution in methanogenesis of methanol byMethanosarcina barkeri. J. Ferment. Technol. 73: 481–485

    Google Scholar 

  • Norrman J (1983) Anaerobic treatment of a black liquor evaporator condensate from a kraft mill in three types of fixed-film reactors. Wat. Sci. Technol. 15: 247–259

    Google Scholar 

  • Noyola A, Guyot JP & Macarie H (1990) Treatment of terephthalic acid wastewater with an anaerobic fixed film reactor. Environ. Technol. Lett. 11: 239–248

    Google Scholar 

  • Pavlostathis SG & Geraldo-Gomez E (1991) Kinetics of anaerobic treatment. Wat. Sci. Technol. 24: 35–59

    Google Scholar 

  • Peereboom JHF, De Man G & Su IT (1994) Start-up of a full scale UASB-reactor for the treatment of terephthalic acid wastewater. Poster Paper Seventh International Symposium on Anaerobic Digestion, Cape Town, 23–27 January, South Africa

  • Pohland FG & Bloodgood DE (1963) Laboratory studies on mesophilic and thermophilic anaerobic sludge digestion. J. Wat. Poll. Contr. Fed. 35: 11–42

    Google Scholar 

  • Pohland FG & Ghosh S (1971) Anaerobic stabilization of organic wastes; two-phase concept. Environ. Lett. 1: 255

    Google Scholar 

  • Powell GE, Hilton GM, Archer DB & Kirsop BHH (1983) Kinetics of methanogenic fermentation of acetate. J. Chem. Tech. Biotechnol. 33: 209–215

    Google Scholar 

  • Rebac S, Kato MT & Lettinga G (1994) The application of an upscaled EGSB-type reactor for the anaerobic treatment of low strength brewery-type wastewater. Internal Report 1993

  • Reynolds PJ & Colleran E(1986) Comparison of start-up and operation of anaerobic fixed bed and hybrid sludge bed reactors treating whey wastewater (pp 515–531) Preprints, EWPCA-Conf. Anaerobic Treatment a Grown-Up Technology, Amsterdam

  • Richardson DA, Andras E & Kennedy KJ (1991) Anaerobic toxicity of fines in chemithermomechanical pulp wastewaters, a batch assay-reactor study comparison. Wat. Sci. Tech. 24: 103–112

    Google Scholar 

  • Rintala J (1992) Thermophilic and mesophilic anaerobic treatment of pulp and paper industry wastewaters. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland

    Google Scholar 

  • Rinzema A (1988) Anaerobic treatment of wastewater with high concentrations of lipids or sulfate. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Rinzema A, Alphenaar A & Lettinga G (1993a) Anaerobic digestion of long chain fatty acids in UASB-reactors and expanded granular sludge bed reactors. Process Biochemistry 28: 527–537

    Google Scholar 

  • Rinzema A, Lettinga G & Van Veen H (1993b) Anaerobic digestion of triglyceride emulsions in expanded granular sludge bed reactors with modified sludge separators. Environ. Technol. 14: 423–432

    Google Scholar 

  • Ross WR, Grobler CJ, Sanetra J & Strohwald NKH (1994) Membrane assisted anaerobic treatment of industrial effluents. Preprints Seventh International Symposium on Anaerobic Digestion (pp 550–559) Cape Town, 23–27 January, South Africa

  • Rudd T, Hicks SJ & Lester JN (1985) Comparison of the treatment of a synthetic meat waste by mesophilic and thermophilic anaerobic fluidized bed reactors. Environ. Technol. Lett. 6: 209–224

    Google Scholar 

  • Sayed S (1987) Anaerobic treatment of slaughterhouse wastewater using the UASB-process. Ph.D. Thesis, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Sayed S, Lettinga G, Van der Sande J & Wijffels R (1988) Anaerobic degradation of the various fractions of slaughterhouse wastewater. Biol. Wastes 23: 117–142

    Google Scholar 

  • Scherer P (1989) Vanadium and molybdenum requirement for the fixation of molecular nitrogen by twoMethanosarcina strains. Arch. Microbiol. 151: 44–48

    Google Scholar 

  • Scherer P & Sahm H (1981) Effect of trace elements and vitamins on the growth ofMethanosarcina barkeri. Acta Biotechnol. 1: 57–65

    Google Scholar 

  • Scherer P, Lippert H & Wolff G (1983) Composition of the majorelements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol. Trace Element Res. 5: 149–163

    Google Scholar 

  • Schmidt JE & Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2546–2551

    Google Scholar 

  • Schönheit P, Moll J & Thauer RK (1980) Growth parameters (K s , U max , Y s ) ofMethanobacterium thermoautotrophicum. Arch. Microbiol. 127: 59–65

    Google Scholar 

  • Schraa G & Jewell WJ (1984) High rate conversions of soluble organics with the thermophilic anaerobic attached expanded bed. J. Wat. Poll. Contr. Fed. 56: 226–232

    Google Scholar 

  • Servizi JA & Gordon RW (1986) Detoxification of TMP and CTMP effluents alternating in a pilot scale aerated lagoon. Pulp and Paper Canada 87: T405-T409

    Google Scholar 

  • Shen CF, Blaszczyk R & Kosaric N (1993) Properties of anaerobic granular sludge as affected by yeast extract, cobalt and iron supplements. Appl. Microbiol. Biotechnol. 39: 132–137

    Google Scholar 

  • Sierra-Alvarez R, Harbrecht J, Kortekaas S & Lettinga G (1990a) The continuous anaerobic treatment of pulping wastewaters. J. Ferment. Bioengin. 70: 119–127

    Google Scholar 

  • Sierra-Alvarez R & Lettinga G (1990b) The methanogenic toxicity of wood resin constituents. Biol. Wastes 33: 211–226

    Google Scholar 

  • Sierra-Alvarez R, Van Eekert M, Kortekaas S & Lettinga G (1991) The anaerobic biodegradability and methanogenic toxicity of pulping wastewaters. Wat. Sci. Tech. 24 (3/4): 113–125

    Google Scholar 

  • Sierra-Alvarez R, Field JA, Kortekaas S & Lettinga G (1994) Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants. Wat. Sci. Tech. 29 (5/6): (in press)

  • Soto M, Lema JM & Méndez R (1992) Characterization and comparison of biomass from mesophilic and thermophilic fixed bed anaerobic digesters. Wat. Sci. Technol. 25 (7): 203–212

    Google Scholar 

  • Souza ME, Fuzaro G & Polegato AR (1992) Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Wat. Sci. Technol. 25 (7): 213–222

    Google Scholar 

  • Speece RE (1987) Nutrient requirements. In: Chynoweth DP & Isaacson R (Eds) Anaerobic Digestion of Biomass (pp 109–129) Elsevier Applied Science

  • Speece RE, Bhattacharya GF, Parkin S & Takashima M (1986) Trace nutrient requirements of anaerobic digestion. Proceedings of Water Treatment Conference: Anaerobic Treatment, a Grown-Up Technology (pp 175–188) Amsterdam, The Netherlands

  • Speece RE, Gallagher D & Parkin GF (1983) Nickel stimulation of anaerobic digestion. Wat. Res. 17: 677–683

    Google Scholar 

  • Speece RE & McCarty PL (1964) Nutrient requirements and biological solids accumulation in anaerobic digestion. Adv. Water Poll. Res. 2: 305–322

    Google Scholar 

  • Spies P (1985) Einsatz des Anaerobverfahrens zur Abtrennung schwer abbaubarer Stoffe. In: Proceedings of the Hannover Industrie Abwasser Tagung ‘ANAEROB’, Conference on Anaerobic Treatment of Industrial Wastewater, October 3–4, 1985, Institut für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, Hannover, Germany

  • Takashima M & Speece RE (1989) Mineral requirements for highrate methane fermentation of acetate at low SRT. J. Water Poll. Control Fed. 61: 1645–1650

    Google Scholar 

  • Thauer RK, Decker K & Jungermann K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Thaveesri J, Boucneau G, Gernaey K, Kaonga B & Verstraete W (1994) Organic and ammonia nitrogen in relation to granular sludge growth. Preprints Seventh International Symposium on Anaerobic Digestion (pp 54–63) Cape Town, 23–27 January, South Africa

  • Tijhuis L, Heijnen JJ & Van Loosdrecht MCM (1992) Nitrification with biofilms on small suspended particles in air-lift reactors. Wat. Sci. Tech. 26: 2207–2211

    Google Scholar 

  • VanderHaegen B, Favere K, Panic V, Peeters T, VandenLangenbergh V, Verstraete W, Van Wambeke M & Ysebaert K (1992) Acidogenesis in relation to in-reactor granule yield. Proc. Sixth Int. Symp. on Anaerobic Digestion (pp 211–230) Sao Paulo, Brasilia

  • Van der Last ARM & Lettinga G (1991a) Anaerobic treatment of domestic sewage under moderate climatic conditions using upflow reactors at increased superficial velocities. Paper presented at the Sixth International Symposium on Anaerobic Digestion, Sao Paulo, 12–16 May

  • Van der Last ARM (1991b) Anaerobic treatment of settled sewage using an EGSB- and a Fluidized Bed process. Final report of an investigation at pilot plant scale dealing with the assessment of the use of these systems in the Netherlands, June 1991 Agricultural University, Department of Environmental Technology, Wageningen, The Netherlands (in Dutch)

  • Vanduffel J (1993) Anaerobic treatment of organic acids. In: Proceedings of NVA-Symposium (pp 9–13) (in Dutch)

  • Van der Hoek JP (1988) Granulation of denitrifying sludge. In: Lettinga G, Grotenhuis JTC, Hulshoff Pol LW & Zehnder AJB (Eds) Granular Anaerobic Sludge; Microbiology and Technology (pp 203–211) UDOC, Wageningen, The Netherlands

    Google Scholar 

  • Van Lier JB, Grolle CTJM, Conway de Macario KCF, Stams AJM & Lettinga G (1992) Start-up of a thermophilic Upflow Anaerobic Sludge Bed (UASB) reactor with mesophilic granular sludge. Appl. Microbiol. Biotechnol. 37: 130–135

    Google Scholar 

  • Van Lier JB, Hulsbeek J, Lettinga G & Stams AJM (1993a) Temperature susceptibility of thermophilic methanogenic sludge: implications for reactor start-up and operation. Bioresource Technol. 43: 227–235

    Google Scholar 

  • Van Lier JB, Frijters C, Grolle CTMJ, Lettinga G & Stams AJM (1993b) Effects of acetate, propionate and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol. 59: 1003–1011

    Google Scholar 

  • Van Lier JB, Ten Brummeler E & Lettinga G (1993c) Thermotolerant anaerobic degradation of volatile fatty acids by digested organic fraction of municipal solid waste. J. Ferment. Bioeng. 76: 140–144

    Google Scholar 

  • Van Lier JB, Boersma F, Debets MMWH & Lettinga G (1994a) ‘High Rate’ thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. In: Paper Pre-prints of the Seventh International Symposium on Anaerobic Digestion (pp 338–347) Cape Town, January 23–27, 1994, South Africa

  • Van Lier JB, Groeneveld N & Lettinga G (1994b) Characteristics and development of thermophilic methanogenic sludge in compartmentalized upflow reactors. Biotechnol. Bioeng. (submitted)

  • Van Lier JB, Lettinga G & Sanz JL (1994c) Effects of biomass immobilization on the thermostability of substrate conversion under thermophilic anaerobic conditions. Wat. Res. (submitted)

  • Vellinga SHJ, Hack PJFM & Van der Vlugt AJ (1986) New type High rate anaerobic reactor. Proceedings Water Treatment Conference ‘Anaerobic Treatment a Grown-Up Technology’ (pp 547–562) Aquatech, Amsterdam, 15–19 September 1986

  • Versprille AI, Franklin RJ & Zoutberg GR (1994) Biobed, a succesfull cross-breed between UASB and fluidized-bed. In: Proceedings of the Seventh International Symposium of Anaerobic Digestion (pp 587–590) Cape Town, South Africa

  • Visser A, Alphenaar PA, Gao Y & Lettinga G (1993a) Granulation and immobilisation of methanogenic and sulfate-reducing bacteria in high rate anaerobic reactors. Appl. Microbiol. Biotechnol. 40: 575–581

    Google Scholar 

  • Visser A, Lettinga G & Nozhevnikova AN (1993b) Sulphide inhibition of methanogenic activity at various pH levels at 55° C. J. Chem. Technol. Biotechnol. 57: 9–14

    Google Scholar 

  • Welander T & Andersson PE (1985) Anaerobic treatment of wastewater from the production of chemi-thermomechanical pulp. Wat. Sci. Tech. 17: 103–112

    Google Scholar 

  • Wiegant WM & Lettinga G (1985) Thermophilic anaerobic digestion of sugars in upflow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 27: 1603–1607

    Google Scholar 

  • Wiegant WM, Hennink M & Lettinga G (1986) Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acifified wastewaters. Wat. Res. 20: 517–524

    Google Scholar 

  • Wiegant WM & De Man AWA (1986) Granulation of biomass in thermophilic anaerobic sludge blanket reactors. Biotechnol. Bioeng. 28: 718–727

    Google Scholar 

  • Wiegant WM (1986) Thermophilic anaerobic digestion for waste and wastewater treatment. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • Wijffels RH, De Beer J, Eekhof D, Van den Heuvel JMR & Tramper J (1991) Growth and substrate consumption by immobilizedNitrobacter agilis: validation of a dynamic model. In: Proceedings of the International Symposium of Environmental Biotechnology (Vol. I, pp 697–699) Royal Flemish Society of Engineers, Oostende, Belgium

    Google Scholar 

  • Wijffels RH (1994) Nitrification by immobilized cells. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • Wei-min Wu, Ji-cui Hu & Xia-sheng Gu (1985) Properties of granular sludge in upflow anaerobic sludge blanket (UASB) reactor and its formation. Proc. 4th Int. Symp. on Anaerobic Digestion, Guang Zhou, China, 11–15 Nov, 1985

  • Wei-min Wu, Hickey RF & Zeikus JG (1991) Characterization of metabolic performance of methanogenic granules treated brewery wastewater — Role of sulfate reducing bacteria. Appl. Environ. Microbiol. 57: 3438–3449

    Google Scholar 

  • Wu Wei-min (1987) Granular sludge in upflow anaerobic sludge blanket (UASB) reactor and its properties. Water Treatment 2: 148–157

    Google Scholar 

  • Yeoh BG (1986) A kinetic-based design for thermophilic anaerobic treatment of a high strength agroindustrial wastewater. Environ. Technol. Lett. 7: 509–518

    Google Scholar 

  • Young JC & McCarty PL (1969) The anaerobic filter for wastewater treatment. J. Water Poll. Control Fed. 4 (5): R160-R173

    Google Scholar 

  • Zeeman G (1978) Internal Report Department Environmental Technology.

  • Zinder SH (1986) Thermophilic waste treatment systems. In: Brock TD (Ed.) Thermophiles: general, molecular and applied biology (pp 257–277 Wiley-Interscience, New York

    Google Scholar 

  • Zinder SH, Anguish T & Cardwell SC (1984) Effects of temperature on methanogenesis in a thermophilic (58° C) anaerobic digester. Appl. Environ. Microbiol. 47: 808–813

    Google Scholar 

  • Zoetemeyer RJ (1982) Acidogenesis of soluble carbohydrate-containing wastewaters. Ph.D. Thesis, University of Amsterdam, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lettinga, G. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67, 3–28 (1995). https://doi.org/10.1007/BF00872193

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872193

Key words

Navigation