Skip to main content
Log in

Investigation of the hexagonal NbGe2 phase

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

NbGe2 thin films and hot pressed powder samples were made over a wide range of preparation conditions. Resistive and inductiveT c values, residual resistance ratios, specific resistances, and grain sizes were determined as a function of the substrate temperature during evaporation. C40-NbGe2 thin films have a maximum resistiveT c of 2.18 K and an inductiveT c of 2.10 K. The maximum residual resistance ratio was 17.7, the lowest specific resistance at room temperature was 57 µΩ-cm. During formation at higher temperatures or under pressure NbGe2 has an affinity for carbon and nitrogen, leading to the formation of niobium carbonitrides with aT c up to 16.2 K. PublishedT c values up to 16 K for NbGe2 are probably due to a contamination with niobium carbonitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Ghosh and D. H. Douglass,Phys. Rev. Lett. 37, 32 (1976); A. K. Ghosh and D. H. Douglass, inSuperconductivity in d- and f-Band Metals, Second Rochester Conference, D. H. Douglass, ed. (1976), p. 59.

    Google Scholar 

  2. C. M. Knoedler and D. H. Douglass,J. Low Temp. Phys. 37, 189 (1979).

    Google Scholar 

  3. J. J. Hanak, J. I. Gittleman, J. P. Pellicane, and S. Bozowski,J. Appl. Phys. 41, 4958 (1970).

    Google Scholar 

  4. G. F. Hardy and J. K. Hulm,Phys. Rev. 93, 1004 (1954).

    Google Scholar 

  5. J. P. Remeika, A. S. Cooper, Z. Fisk, and D. C. Johnston,J. Less Common Met. 62, 211 (1978).

    Google Scholar 

  6. M. Kloska, Diploma thesis, University of Karlsruhe (1982).

  7. O. Meyer, H. Mann, and E. Phrilingos, inApplication of Ion Beams to Metals, S. T. Picrauxet al., eds. (Plenum Press, New York, 1974), p. 15; D. Dew-Hughes and R. Jones,Appl. Phys. Lett. 36, 856 (1980).

    Google Scholar 

  8. S. A. Wolf, Naval Research Laboratories, Washington, D.C., private communication.

  9. M. Kloska and E. L. Haase, submitted toJ. Less Common Met.

  10. P. Scherrer,Göttinger Nachrichten Math. Phys. 98 (1918).

  11. W. Stocker, Zulassungsarbeit, University of Karlsruhe (1980).

  12. J. Geerk and K. G. Langguth,Solid State Commun. 23, 83 (1977).

    Google Scholar 

  13. J. L. Jorda, R. Flükiger, and J. Müller,J. Less Common Met. 62, 25 (1978).

    Google Scholar 

  14. U. Schneider and J. Geerk, KfK-Report 3051, 142 (1980); E. L. Haase and O. Meyer,IEEE Trans. Magn. MAG-17, 541 (1981).

  15. R. Kubiak, R. Horyń, H. Broda, and K. Lukaszewicz,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 20, 429 (1972).

    Google Scholar 

  16. J. H. Carpenter and A. W. Searcy,J. Am. Chem. Soc. 78, 2079 (1956).

    Google Scholar 

  17. W. B. Pearson,A Handbook of Lattice Spacings and Structures of Metals and Alloys, G. V. Raynor, ed., Vol. 2 (Pergamon Press, Oxford, 1967), p. 1369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloska, M., Haase, E.L. Investigation of the hexagonal NbGe2 phase. J Low Temp Phys 54, 267–275 (1984). https://doi.org/10.1007/BF00683278

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683278

Keywords

Navigation