Skip to main content
Log in

Interstellar clouds and the formation of stars

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere throughin situ measurements. The ‘pseudo-plasma formalism’, which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important.

In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well ‘pinch’ the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together.

Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of ‘dust’ (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A ‘stellesimal’ accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.

The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed in Part I logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1958,Tellus 10, 104.

    Google Scholar 

  • Alfvén, H.: 1963, in J. W. Evans (ed.), ‘The Solar Corona’,IAU Symp. 16, 35.

    Google Scholar 

  • Alfvén, H.: 1968,Ann. Geophys. 24, 1.

    Google Scholar 

  • Alfvén, H.: 1975a,Ann. N.Y. Acad. Sci. 257, 179.

    Google Scholar 

  • Alfvén, H.: 1975b, in B. Hultqvist and L. Stenflo (eds.),Physics of the Hot Plasma in the Magnetosphere, Plenum Press, New York, London, p. 1.

    Google Scholar 

  • Alfvén, H.: 1977a,Rev. Geophys. Space Phys. 15, 271.

    Google Scholar 

  • Alfvén, H.: 1977b, Tech. Rep. TRITA-EPP-77-19, Dept of Plasma Phys., Royal Inst. of Tech., Stockholm, Sweden.

    Google Scholar 

  • Alfvén, H. and Arrhenius, G.: 1976,Evolution of the Solar System, NASA SP-345, Washington D.C.

  • Belcher, J. W. and Davis, J. R., Jr: 1971,J. Geophys. Res. 76, 3534.

    Google Scholar 

  • Bennett, W.: 1934,Phys. Rev. 45, 890.

    Google Scholar 

  • Bergström, J. and Hellsten, T.: 1976,Nuclear Instr. Methods 133, 347.

    Google Scholar 

  • Block, L. P.: 1972,Cosmic Electrodyn. 3, 349.

    Google Scholar 

  • Block, L. P.: 1975, in B. Hultqvist and L. Stenflo (eds.),Physics of the Hot Plasma in the Magnetosphere, Plenum Press, New York, London, p. 229.

    Google Scholar 

  • Block, L. P.: 1976, in D. J. Williams (ed.), ‘Physics of Solar Planet. Environments’,AGU Int. Symp. on Solar-Terr. Physics, Boulder, Colorado, p. 255.

  • Block, L. P.: 1977, Tech. Rep. TRITA-EPP-77-16, Dept of Plasma Phys., Royal Inst. of Tech., Stockholm, Sweden.

    Google Scholar 

  • Boström, R.: 1975, Tech. Rep. TRITA-EPP-75-18, Dept of Plasma Phys., Royal Inst. of Tech., Stockholm, Sweden. (Lecture at the Eiscat Summer School, Tromsö, Norway, 8–13 June, 1975.)

    Google Scholar 

  • Carlqvist, P.: 1969,Solar Phys. 7, 377.

    Google Scholar 

  • Carlqvist, P.: 1972,Cosmic Electrodyn. 3, 377.

    Google Scholar 

  • Chapman, S. and Bartels, J.: 1940,Geomagnetism, Vol. II, Clarendon Press, p. 868.

  • Danielsson, L.: 1973,Astrophys. Space Sci. 24, 459.

    Google Scholar 

  • de Forest, S. E.: 1972,J. Geophys. Res. 77, 651.

    Google Scholar 

  • Fälthammar, C.-G.: 1974,Space Sci. Rev. 15, 803.

    Google Scholar 

  • Fälthammar, C.-G.: 1977,Rev. Geophys. Space Phys. 15, 457.

    Google Scholar 

  • Heikkila, W. J.: 1972, in E. R. Dyer (ed.), ‘Critical Problems of Magnetospheric Physics’, Symp. Jointly Sponsored by COSPAR, IAGA, and URSI, Madrid, Spain, 11–13 May, 1972, p. 67.

  • Hirschberg, J., Bame, S. J., and Robbins, D. E.: 1972,Solar Phys. 23, 467.

    Google Scholar 

  • Hollweg, J. V.: 1975,Rev. Geophys. Space Phys. 13, 263.

    Google Scholar 

  • Horedt, G. P.: 1976,Astrophys. Space Sci. 45, 353.

    Google Scholar 

  • Langmuir, I. and Mott-Smith, H., Jr: 1924,Gen. Elec. Rev. 27, 762.

    Google Scholar 

  • Larson, R. B.: 1973,Ann. Rev. Astron. Astrophys. 11, 219.

    Google Scholar 

  • Lehnert, B., Bergström, J., and Holmberg, S.: 1966,Nuclear Fusion 6, 231.

    Google Scholar 

  • Murty, G. S.: 1962,Arkiv Fysik 21, 203.

    Google Scholar 

  • Raadu, M. A.: 1975, Tech. Rep. TRITA-EPP-75-28, Dept of Plasma Phys., Royal Inst. of Tech., Stockholm, Sweden.

    Google Scholar 

  • Reasoner, D. L., Lennartsson, W., and Chappell, C. R.: 1976, in A. Rosen (ed.),Spacecraft Charging by Magnetospheric Plasmas, American Inst. of Aeronautics and Astronautics, New York, p. 89.

    Google Scholar 

  • Rishbeth, H. and Garriott, O. K.: 1969,Introduction to Ionospheric Physics, Academic Press, New York, London, p. 1.

    Google Scholar 

  • Rose, D. J. and Clark, M., Jr: 1961,Plasmas and Controlled Fusion, MIT Press, Cambridge, p. 331.

    Google Scholar 

  • Rosenberg, R. L. and Coleman, P. J., Jr: 1969,J. Geophys. Res. 74, 5611.

    Google Scholar 

  • Sherman, J. C.: 1973,Astrophys. Space Sci. 24, 487.

    Google Scholar 

  • Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: 1976,Eos Trans. AGU 57, 997.

    Google Scholar 

  • Soberman, R. K., Neste, S. L., and Lichtenfeld, K.: 1974,Science 183, 320.

    Google Scholar 

  • Spitzer, L., Jr: 1968,Diffuse Matter in Space, Interscience Publishers, New York.

    Google Scholar 

  • Strom, S. E., Strom, K. M., and Grasdalen, G. M.: 1975,Ann. Rev. Astron. Astrophys. 13, 187.

    Google Scholar 

  • Torvén, S. and Babić, M.: 1976,IEE 4th Int. Conf. on Gas Discharges, Swansea, 7–10 Sept. 1976, Conf. Publ. No 143, p. 323.

  • Tsytovich, V. N.: 1977,Theory of Turbulent Plasma, Consultants Bureau, New York, p. 1.

    Google Scholar 

  • von Hoerner, S.: 1968, in Y. Terzian (ed.),Interstellar Ionized Hydrogen, Charlottesville, Virginia, Dec. 1967.

  • William, I. P. and Crampin, D. J.: 1971,Monthly Notices Roy. Astron. Soc. 152, 261.

    Google Scholar 

  • Zmuda, A. J. and Armstrong, J. C.: 1974,J. Geophys. Res. 79, 4611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfvén, H., Carlqvist, P. Interstellar clouds and the formation of stars. Astrophys Space Sci 55, 487–509 (1978). https://doi.org/10.1007/BF00642272

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00642272

Keywords

Navigation