Skip to main content
Log in

The oldest records of photosynthesis

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

There is diverse, yet controversial fossil evidence for the existence of photosynthesis 3500 million years ago. Among the most persuasive evidence is the stromatolites described from low grade metasedimentary rocks in Western Australia and South Africa. Based on the understanding of the paleobiology of stromatolites and using pertinent fossil and Recent analogs, these Early Archean stromatolites suggest that phototrophs evolved by 3500 million years ago. The evidence allows further interpretation that cyanobacteria were involved. Besides stromatolites, microbial and chemical fossils are also known from the same rock units. Some microfossils morphologically resemble cyanobacteria and thus complement the adduced cyanobacterial involvement in stromatolite construction. If cyanobacteria had evolved by 3500 million years ago, this would indicate that nearly all prokaryotic phyla had already evolved and that prokaryotes diversified rapidly on the early Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel PWU (1980) On the early Archaean Isua iron-formation, West Greenland. Precambrian Res 11: 73–87

    Article  Google Scholar 

  • Awramik SM (1981) The pre-Phanerozoic biosphere-three billion years of crises and opportunities. In: Nitecki MH (ed) Biotic Crises in Ecological and Evolutionary Time, pp 83–102. Academic Press, New York

    Google Scholar 

  • Awramik SM and Barghoorn ES (1977) The Gunflint microbiota. Precambrian Res 5: 121–142

    Article  Google Scholar 

  • Awramik SM and Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329

    Google Scholar 

  • Awramik SM, Schopf JW and Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20: 357–374

    Article  Google Scholar 

  • Awramik SM, Schopf JW and Walter MR (1988) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archean stromatolites? A discussion. Precambrian Res 39: 303–309

    Article  Google Scholar 

  • Barghoorn ES and Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147: 563–577

    Google Scholar 

  • Belkin S and Jannasch HW (1989) Microbial mats at deepsea hydrothermal vents: New observations. In: Cohen Y and Rosenberg E (eds) Microbial Mats, pp 16–21. Am Assoc Microbiol, Washington, DC

    Google Scholar 

  • Bertrand-Sarfati J and Moussine-Pouchkine A (1985) Evolution and environmental conditions of the Conophyton associations in the Atar Dolomite (Upper Proterozoic), Mauritania. Precambrian Res 29: 207–234

    Article  Google Scholar 

  • Brock TR (1989) Evolutionary relationships of the autotrophic bacteria. In: Schlegel HG and Bowen B (eds) Autotrophic Bacteria, pp 499–512. Science Tech Publ, Madison

    Google Scholar 

  • Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archean stromatolites?. Precambrian Res 24: 157–172

    Article  Google Scholar 

  • Buick R (1988) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archaean stromatolites? A reply. Precambrian Res 39: 311–317

    Article  Google Scholar 

  • Buick R (1991) Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5: 411–459

    Google Scholar 

  • Buick R and Dunlop JSR (1990) Evaporitic sediments of early Archean age from the Warrawoona Group. North Pole. Western Australia. Sedimentology 37: 247–277

    Google Scholar 

  • Buick R, Dunlop JSR and Groves DI (1981) Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161–181

    Google Scholar 

  • Bylerly GR and Palmer MR (1991) Tourmaline mineralization in the Barberton Greenstone Belt, South Africa: Early Archean metasomatism by evaporite-derived boron. Contr Miner Petrol 107: 387–402

    Article  Google Scholar 

  • Byerly GR, Lowe DR and Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319: 489–491

    Google Scholar 

  • Cairnes-Smith AG (1978) Precambrian solution chemistry, inverse segregation, and banded iron formations. Nature 276: 807–808

    Google Scholar 

  • Casanova J and Nury D (1989) Biosedimentologie des stromatolites fluvio-lacustres du fosse oligocene de Marseille. Bull Soc Geol France 6: 1173–1184

    Google Scholar 

  • Castenholz RW (1984) Composition of hot springs microbial mats: A summary. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 101–119. AR Liss, New York

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68: 1135–1143

    Google Scholar 

  • Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2: 351–387

    Google Scholar 

  • Cloud P (1988) Oasis in Space, 508 pp. W.W. Norton, New York

    Google Scholar 

  • Cloud P and Morrison K (1979) On microbial contaminants, micropseudofossils, and the oldest records of life. Precambrian Res 9: 81–91

    Article  Google Scholar 

  • Cohen Y and Rosenberg E (Eds) (1989) Microbial Mats. American Society for Microbiology, 494 pp. Washington, D.C.

    Google Scholar 

  • Cohen Y, Jørgensen BB, Paden E and Shilo M (1975) Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257: 489–491

    Google Scholar 

  • deWit MJ, Hart R, Martin A and Abbott P (1982) Archean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies. Econ Geol 77: 1783–1802

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K and Steinen RP (1986) Giant subtidal stronatolites forming in normal salinity waters. Nature 324: 55–58

    Google Scholar 

  • Glaessner MF (1984) The Dawn of Animal Life, 244 pp. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr N and Whitton BA (eds) The Biology of Blue-Green Algae, pp 434–472. Blackwell, Oxford

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites, pp 113–126. Elsevier, Amsterdam

    Google Scholar 

  • Groves DI, Dunlop JSR and Buick R (1981) An early habitat for life. Sci Am 245: 64–73

    Google Scholar 

  • Hayes JM, Kaplan IR and Wedeking KW (1983) Precambrian organic geochemistry: Preservation of the record. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 93–134. Princeton Univ. Press, Princeton

    Google Scholar 

  • Hofmann HJ (1969a) Attributes of stromatolites. Geol Surv Canada, Paper 69-39, 58 pp

  • Hofmann HJ (1969b) Stromatolites from the Proterozoic and Sibley Groups, Ontario. Geol Surv Canada, Paper 68–69, 77 pp

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: Significance and systematics. J Paleontol 50: 1040–1073

    Google Scholar 

  • Holo H and Grace D (1987) Polyglucose in Chloroflexus aurantiacus studied by 3C-NMR. Arch Microbiol 148: 292–297

    Google Scholar 

  • Holo H and Sirevag R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch Microbiol 145: 173–180

    Google Scholar 

  • Horodyski RJ, Bloeser B and VonderHaar S (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. J Sediment Petrol 47: 680–696

    Google Scholar 

  • Javor B (1989) Hypersaline Environments, 328 pp. Springer-Verlag, Berlin

    Google Scholar 

  • Jørgensen BB and Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb Ecol 16: 133–147

    Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Dtsch Geol Ges 60: 68–125

    Google Scholar 

  • Kennard JM and James NP (1986) Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios 1: 492–503

    Google Scholar 

  • Kidder DL and Awramik SM (1990) Acritarchs in lower greenschist facies argillite or the Middle Proterozoic Libby formation, upper Belt Supergroup, Montana. Palaios 5: 124–133

    Google Scholar 

  • Knoll AH (1984) The Archean/Proterozoic transition: A sedimentary and paleobiological perspective. In: Holland HD and Trendall AF (eds) Patterns of Change in Earth Evolution, pp 221–242. Springer-Verlag, Berlin

    Google Scholar 

  • Knoll AH (1985) Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Phil Trans R Soc London B 311: 111–122

    Google Scholar 

  • Knoll AH, Barghoorn ES and Awramik SM (1978) New microorganisms from the Aphebian Gunflint Iron Formation, Ontario. J Paleontol 52: 976–992

    Google Scholar 

  • Krumbein WE (1983) Stromatolites—The challenge of a term in space and time. Precambrian Res 20: 493–531

    Article  Google Scholar 

  • Kuenen JG and Tuovinen OH (1981) The genera Thiobacillus and Thiomicrospira. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes, Vol 1, pp 1023–1036. Springer-Verlag, Berlin

    Google Scholar 

  • Lambert IB, Donnelly TH, Dunlop JSR and Groves DI (1978) Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origin. Nature 276: 808–811

    Google Scholar 

  • Lowe DR (1980a) Archean sedimentation. Ann Rev Earth Planet Sci 1980 8: 140–194

    Google Scholar 

  • Lowe DR (1980b) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284: 441–443

    Google Scholar 

  • McKirdy DM and Hahn JH (1982) The composition of kerogen and hydrocarbons in Precambrian rocks. In: Holland HD and Schidlowski M (eds) Mineral Deposits and the Evolution of the Biosphere, pp 123–154. Springer-Verlag, Berlin

    Google Scholar 

  • Miller SL (1982) Prebiotic synthesis of organic compounds. In: Holland HD and Schidlowski M (eds) Mineral Deposits and the Evolution of the Biosphere, pp 155–176. Springer-Verlag, Berlin

    Google Scholar 

  • Muir MD (1987) Facies models for Australian Precambrian evaporites. In: Peryt T (ed) Evaporite Basins, pp 5–21. Springer-Verlag, Berlin

    Google Scholar 

  • Olson JM (1978) Precambrian evolution of photosynthetic and respiratory organisms. In: Hecht MK, Steere WC and Wallace B (eds) Evolutionary Biology, Vol 11, pp 1–37. Plenum, New York

    Google Scholar 

  • Olson JM and Pierson BK (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res 9: 251–259

    Google Scholar 

  • Olson JM and Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108: 209–248

    PubMed  Google Scholar 

  • Pace NR (1991) Origin of life—Facing up to the physical setting. Cell 65: 531–533

    Article  PubMed  Google Scholar 

  • Peat CJ, Muir MD, Plumb KA, McKirdy DM and Norvick MS (1978) Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR J Austr Geol Geophys 3: 1–17

    Google Scholar 

  • Pflug HD (1966) Structured organic remains from the Fig Tree Series of the Barberton Mountain Land. Univ. Witwatersrand Econ Geol Res Unit Info Circ, 28, 14 pp

  • Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats, pp 402–427. Am Assoc Microbiol, Washington, DC

    Google Scholar 

  • Preuss A, Schauder R and Fuchs G (1989) Carbon isotopic fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z Naturforsch 44c: 397–402

    Google Scholar 

  • Read JF (1976) Calcretes and their distinction from stromatolites. In: Walter MR (ed) Stromatolites, pp 55–71. Elsevier, Amsterdam

    Google Scholar 

  • Schidlowski M (1982) Content and isotopic composition of reduced carbon in sediments. In: Holland HD and Schidlowski M (eds) Mineral Deposits and the Evolution of the Biosphere, pp 103–122. Springer-Verlag, Berlin

    Google Scholar 

  • Schidlowski M (1987) Application of stable carbon isotopes to early biochemical evolution on Earth. Ann Rev Earth Planet Sci 15: 47–72

    Article  Google Scholar 

  • Schidlowski M (1992) The initiation of biological precesses on Earth: Summary of empirical evidence. In: Engel MH and Macko SA (eds) Organic Geochemistry. Plenum, New York (in press)

    Google Scholar 

  • Schidlowski M, Hayes JM and Kaplan IR (1983) Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 149–186. Princeton Univ. Press, Princeton

    Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J Paleontol 42: 651–688

    Google Scholar 

  • Schopf JW and Sovietov YuK (1976) Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy. Science 193: 143–146

    Google Scholar 

  • Schopf JW and Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 214–239. Princeton Univ. Press, Princeton

    Google Scholar 

  • Schopf JW and Packer BM (1987) Early Archean (3.3 to 3.5 Ga-old) fossil microorganisms from the Warrawoona Group, Western Austrailia. Science 237: 70–73

    PubMed  Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM and Benmore WC (1979) Stromatolite morphogenesis-progress and problems. Can J Earth Sci 16: 992–1015

    Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF and Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342: 139–142

    Article  PubMed  Google Scholar 

  • Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) (1981) The Prokaryotes, Vol 1, 1102 pp. Springer-Verlag, Berlin

    Google Scholar 

  • Strother PK and Barghoorn ES (1980) Microspheres from the Swartkoppie Formation: A review. In: Halvorson HO and VanHolde KE (eds) The Origins of Life and Evolution, pp 1–18. AR Liss, New York

    Google Scholar 

  • Thrailkill J (1976) Spelothems. In: Walter MR (ed) Stromatolites, pp 73–86. Elsevier, Amsterdam

    Google Scholar 

  • Valentine JW and Erwin DH (1987) Interpreting great developmental experiments: The fossil record. In: Raff RA and Raff EC (eds) Development as an Evolutionary Process, pp 71–107. AR Liss, New York

    Google Scholar 

  • Valentine JW, Awramik SM, Signor PW and Sadler PM (1991) The biological explosion at the Precambrian-Cambrian boundary. In: Hecht MK, Wallace B and MacIntyre RJ (eds) Evolutionary Biology, Vol 25, pp 279–356. Plenum, New York

    Google Scholar 

  • Vermaas W (1989) The structure and function of Photosystem II. In: Bowler J and Mallin R (eds) Techniques and New Developments in Photosynthesis Research, NATO ASI Series, Vol 168, pp 35–59, Plenum, New York

    Google Scholar 

  • Vidal G (1984) The oldest eukaryotic cells. Sci Am 250: 48–57

    PubMed  Google Scholar 

  • Walker JCG (1978) Oxygen and hydrogen in the primitive atmosphere. Pure Appl Geophys 116: 222–231

    Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ and Walter MR (1983) Environmental evolution of the Archean-Proterozoic earth. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 260–290. Princeton Univ. Press, Princeton

    Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54: 271–293

    Article  PubMed  Google Scholar 

  • Walsh MM and Lowe DR (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314: 530–532

    Google Scholar 

  • Walter MR (1976a) Geyserites of Yellowstone National Park: An example of abiogenic ‘stromatolites’. In: Walter MR (ed) Stromatolites, pp 87–112. Elsevier, Amsterdam

    Google Scholar 

  • Walter MR (1976b) Introduction. In: Walter MR (ed) Stromatolites, pp 1–3. Elsevier, Amsterdam

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: Evidence of the earth's earliest benthos. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 187–213. Princeton Univ. Press, Princeton

    Google Scholar 

  • Walter MR, Buick R and Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445

    Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats, pp 3–15. Am Assoc Microbiol, Washington, DC

    Google Scholar 

  • Worrell GF (1985) Sedimentology and mineralogy of silicified evaporites in the basal Kromberg Formation, South Africa. Unpublished M.A. Thesis, Lousiana State University, 152 pp

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awramik, S.M. The oldest records of photosynthesis. Photosynth Res 33, 75–89 (1992). https://doi.org/10.1007/BF00039172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039172

Key words

Navigation