Skip to main content

Beta-Glucanases in Animal Nutrition

  • Chapter
  • First Online:
  • 212 Accesses

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

Abstract

Many nutrients such as proteins, lipids, and starch can be hydrolysed in the digestive tracts of animals. Although, due to a lack of hydrolysing enzymes, the majority of non-starch polysaccharides, such as beta-glucan, remain undigested. Beta-glucan rich cereals such as barley, oats, and wheat are used in animal feeds to boost immunological function, act as an alternative to antibiotics and improve the overall growth performances of animals. Apart from its positive effects, beta-glucan causes some negative effects in most animals and poultry. Beta-glucan content in animal feeds causes high digesta viscosity, sequentially it reduces nutrient digestibility and disruption of intestinal inhabitant microbiota. This can be overcome by the proper digestion of beta-glucan accomplished by the supplementation of exogenous beta-glucanase in animal feeds. Exogenous beta-glucanases efficiently eradicate the negative effects associated with beta-glucan and maintain the natural microbiota in the gastrointestinal tract. This chapter explains a more comprehensive understanding of the effect of beta-glucans in animal diets and the benefit of beta-glucanases as a feed enzyme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almirall M, Francesch M, Perez-Vendrell AM, Brufau J, Esteve-Garcia E (1995) The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J Nutr 125(4):947–955

    CAS  PubMed  Google Scholar 

  • Annett CB, Viste JR, Chirino-Trejo M, Classen HL, Middleton DM, Simko E (2002) Necrotic enteritis: effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type a. Avian Pathol 31(6):598–601

    Article  CAS  PubMed  Google Scholar 

  • Apajalahti J, Kettunen A, Graham H (2004) Characteristics of the gastrointestinal microbial communities, with special reference to chickens. Worlds Poult Sci J 60(2):223–232

    Article  Google Scholar 

  • Bach Knudsen KE, Hansen I (1991) Gastrointestinal implications in pigs of wheat and oat fractions. 1. Digestibility and bulking properties of polysaccharides and other major constituents. Br J Nutr 65(2):217–232

    Article  CAS  PubMed  Google Scholar 

  • Bach Knudsen KE, Jensen BB, Hansen I (1993) Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in β-D glucan. Br J Nutr 70:531–556

    Google Scholar 

  • Bedford MR, Cowieson AJ (2012) Exogenous enzymes and their effects on intestinal microbiology. Anim Feed Sci Technol 173(1–2):76–85

    Article  CAS  Google Scholar 

  • Bedford MR, Partridge GG (2001) Enzymes in farm animal nutrition: Cambridge. CABI Publishing, USA

    Book  Google Scholar 

  • Biliaderis CG, Izydorczyk MS (2007) Functional food carbohydrates: New York. CRC Press, NY, USA, p 21

    Google Scholar 

  • Buliga GS, Brant DA, Fincher GB (1986) The sequence statistics and solution conformation of a barley (1,3-1,4)-β-d-glucan. Carbohydr Res 157:139–156

    Article  CAS  PubMed  Google Scholar 

  • Campbell GL, Classen HL, Goldsmith KA (1983) Effect of fat retention on the rachitogenic effect of rye fed to broiler chicks. Poult Sci 62(11):2218–2223

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Zhang ZF, Kim IH (2013) Effects of single or combined dietary supplementation of βglucan and kefir on growth performance, blood characteristics and meat quality in broilers. Br Poult Sci 54(2):216–221

    Article  CAS  PubMed  Google Scholar 

  • Choct M, Kocher A, Waters DLE, Pettersson D, Ross G (2004) A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br J Nutr 92(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Clarke LC, Sweeney T, Curley E, Gath V, Duffy SK, Vigors S, Rajauria G, O’Doherty JV (2018) Effect of β-glucanase and β-xylanase enzyme supplemented barley diets on nutrient digestibility, growth performance and expression of intestinal nutrient transporter genes in finisher pigs. Anim Feed Sci Technol 238:98–110

    Article  CAS  Google Scholar 

  • Collett SR (2012) Nutrition and wet litter problems in poultry. Anim Feed Sci Technol 173(1–2):65–75

    Article  CAS  Google Scholar 

  • Cowieson AJ, Bedford MR, Selle PH, Ravindran V (2009) Phytate and microbial phytase: implications for endogenous nitrogen losses and nutrient availability. Worlds Poult Sci J 65:401–418

    Article  Google Scholar 

  • Cowieson AJ, Hruby M, Pierson EEM (2006) Evolving enzyme technology: impact on commercial poultry nutrition. Nutr Res Rev 19(1):90–103

    Article  CAS  PubMed  Google Scholar 

  • Cowieson AJ, Ravindran V (2007) Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. Br J Nutr 98(4):745–752

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira CAF, Vetvicka V, Zanuzzo FS (2019) β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comp Immunol Microbiol Infect Dis 62:1–6

    Article  PubMed  Google Scholar 

  • Engstrom DF, Mathison GW, Goonewardene LA (1992) Effect of β-glucan, starch, and fibre content and steam vs. dry rolling of barley grain on its degradability and utilisation by steers. Anim Feed Sci Technol 37(1–2):33–46

    Article  CAS  Google Scholar 

  • Estrada A, Yun CH, Van Kessel A, Li B, Hauta S, Laarveld B (1997) Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol Immunol 41(12):991–998

    Article  CAS  PubMed  Google Scholar 

  • Ewing WR (1963) Poultry nutrition, 5th edn. Ray Ewing Co, South Pasadena, CA

    Google Scholar 

  • Feighner SD, Dashkevicz MP (1988) Effect of dietary carbohydrates on bacterial cholyltaurine hydrolase in poultry intestinal homogenates. Appl Environ Microbiol 54(2):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry RE, Allred JB, Jensen LS, James MG (1958) Effect of pearling barley and of different supplements to diets containing barley on chick growth and feed efficiency. McGin-nis. Poult Sci 37:281–288

    Article  CAS  Google Scholar 

  • Fuente JM, Pérezde Ayala P, Villamide MJ (1995) Effect of dietary enzyme on the metabolizable energy of diets with increasing levels of barley fed to broilers at different ages. Anim Feed Sci Technol 56(1–2):45–53

    Article  CAS  Google Scholar 

  • Guo Y, Ali RA, Qureshi MA (2003) The influence of β-glucan on immune responses in broiler chicks. Immunopharmacol Immunotoxicol 25(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Hermans L, De Pelsmaeker S, Denaeghel S, Cox E, Favoreel HW, Devriendt B (2021) β-Glucan-induced IL-10 secretion by monocytes triggers porcine NK cell cytotoxicity. Front Immunol 12:634402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtekjølen AK, Vhile SG, Sahlstrøm S, Knutsen SH, Uhlen AK, Åssveen M, Kjos NP (2014) Changes in relative molecular weight distribution of soluble barley beta-glucan during passage through the small intestine of pigs. Livest Sci 168:102–108

    Article  Google Scholar 

  • Hooda S, Metzler-Zebeli BU, Vasanthan T, Zijlstra RT (2011) Effects of viscosity and fermentability of dietary fibre on nutrient digestibility and digesta characteristics in ileal-cannulated grower pigs. Br J Nutr 106(5):664–674

    Article  CAS  PubMed  Google Scholar 

  • Inborr J, Schmitz M, Ahrens F (1993) Effect of adding fibre and starch degrading enzymes to a barley/wheat based diet on performance and nutrient digestibility in different segments of the small intestine of early weaned pigs. Anim Feed Sci Technol 44(1–2):113–127

    Article  CAS  Google Scholar 

  • Jacob JP, Pescatore AJ (2014) Barley β-glucan in poultry diets. Ann Transl Med 2(2):20

    PubMed  PubMed Central  Google Scholar 

  • Jaroni D, Scheideler SE, Beck MM, Wyatt C (1999) The effect of dietary wheat middlings and enzyme supplementation II: apparent nutrient digestibility, digestive tract size, gut viscosity, and gut morphology in two strains of leghorn hens. Poult Sci 78(12):1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Jensen LS, Fry RE, Allred JB, James MG (1957) Improvement in the nutritional value of barley for chicks by enzyme supplementation. McGin-nis Poult Sci 36:919–921

    Article  CAS  Google Scholar 

  • Johansen HN, Bach Knudsen KEB, Wood PJ, Fulcher RG (1997) Physico-chemical properties and the degradation of oat bran polysaccharides in the gut of pigs. J Sci Food Agric 73(1):81–92

    Article  CAS  Google Scholar 

  • Johansen HN, Knudsen KEB, Sandström B, Skjøth F (1996) Effects of varying content of soluble dietary fibre from wheat flour and oat milling fractions on gastric emptying in pigs. Br J Nutr 75(3):339–351

    Article  CAS  PubMed  Google Scholar 

  • Józefiak D, Rutkowski A, Jensen BB, Engberg RM (2006) The effect of β-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. Br Poult Sci 47(1):57–64

    Article  PubMed  Google Scholar 

  • Kaldhusdal M, Hofshagen M (1992) Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis. Poult Sci 71(7):1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak MM, Lærke HN, Knudsen KEB (2012) Effects of isolated and complex dietary fiber matrices in breads on carbohydrate digestibility and physicochemical properties of ileal effluent from pigs. J Agric Food Chem 60(51):12469–12476

    Article  CAS  PubMed  Google Scholar 

  • Koolman J, Roehm KH (2005) Color atlas of biochemistry, 2nd edn. Thieme Publishers, Stuttgart, Stuttgart, Germany

    Google Scholar 

  • Langhout P (2000) New additives for broiler chickens. World Poult-Elsevier 16(3):22–27

    Google Scholar 

  • Leuzinger S, Steingötter A, Nyström L (2018) Viscosity of cereal β-glucan in the gastrointestinal tract. Chimia 72(10):733–735

    Article  CAS  PubMed  Google Scholar 

  • Mathlouthi N, Mallet S, Saulnier L, Quemener B, Larbier M (2002a) Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim Res 51(5):395–406

    Article  CAS  Google Scholar 

  • Mathlouthi N, Saulnier L, Quemener B, Larbier M (2002b) Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination. J Agric Food Chem 50(18):5121–5127

    Article  CAS  PubMed  Google Scholar 

  • Mellor S (2000) Nutraceuticals-alternatives to antibiotics World Poult-Elsevier 16(2):30–33

    Google Scholar 

  • Morales-López R, Auclair E, García F, Esteve-Garcia E, Brufau J (2009) Use of yeast cell walls; −1, 3. Poult Sci 88(3):601–607

    Article  PubMed  Google Scholar 

  • Munyaka PM, Nandha NK, Kiarie E, Nyachoti CM, Khafipour E (2016) Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult Sci 95(3):528–540

    Article  CAS  PubMed  Google Scholar 

  • Murphy EA, Davis JM, Carmichael MD (2010) Immune modulating effects of beta-glucan. Curr Opin Clin Nutr Metab Care 13(6):656–661

    Article  CAS  PubMed  Google Scholar 

  • Noss I, Doekes G, Thorne PS, Heederik DJJ, Wouters IM (2013) Comparison of the potency of a variety of β-glucans to induce cytokine production in human whole blood. Innate Immun 19(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Owusu-Asiedu A, Simmins PH, Brufau J, Lizardo R, Péron A (2010) Effect of xylanase and β-glucanase on growth performance and nutrient digestibility in piglets fed wheat-barley-based diets. Livest Sci 134(1–3):76–78

    Article  Google Scholar 

  • Perttilä S, Valaja J, Partanen K, Jalava T, Kiiskinen T, Palander S (2001) Effects of preservation method and β-glucanase supplementation on ileal amino acid digestibility and feeding value of barley for poultry. Br Poult Sci 42(2):218–229

    Article  PubMed  Google Scholar 

  • Raza A, Bashir S, Tabassum R (2019) An update on carbohydrases: growth performance and intestinal health of poultry. Heliyon 5(4):e01437

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez ML, Rebolé A, Velasco S, Ortiz LT, Treviño J, Alzueta C (2012) Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. J Sci Food Agric 92(1):184–190

    Article  PubMed  Google Scholar 

  • Sahasrabudhe NM, Tian L, Van den Berg M, Bruggeman G, Bruininx E, Schols HA, Faas MM, De Vos P (2016) Endo-glucanase digestion of oat β-glucan enhances Dectin-1 activation in human dendritic cells. J Funct Foods 21:104–112

    Article  CAS  Google Scholar 

  • Schwartz B, Vetvicka V (2021) Review: β-glucans as effective antibiotic alternatives in poultry. Molecules 26(12):3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41

    Article  CAS  Google Scholar 

  • Synytsya A, Novak M (2014) Structural analysis of glucans. Ann Transl Med 2(2):17

    PubMed  PubMed Central  Google Scholar 

  • Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY (2002) The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169(7):3876–3882

    Article  CAS  PubMed  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F (2011) Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol 40(4):341–347

    Article  CAS  PubMed  Google Scholar 

  • Vahjen W, Gläser K, Schäfer K, Simon O (1998) Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. J Agric Sci 130(4):489–500

    Article  CAS  Google Scholar 

  • Vetvicka V, Vetvickova J (2014) Natural immunomodulators and their stimulation of immune reaction: true or false? Anticancer Res 34(5):2275–2282

    CAS  PubMed  Google Scholar 

  • Viveros A, Brenes A, Pizarro M, Castaño M (1994) Effect of enzyme supplementation of a diet based on barley, and autoclave treatment, on apparent digestibility, growth performance and gut morphology of broilers. Anim Feed Sci Technol 48(3–4):237–251

    Article  CAS  Google Scholar 

  • Willingham HE, Fry RE, Leong KC, Jensen LS, McGinnis J (1961) Studies on stability of enzyme supplements to pelleting, long storage, and other treatments. Poult Sci 40(4):854–857

    Article  Google Scholar 

  • Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH (2004) Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br Poult Sci 45(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Yegani M, Korver DR (2008) Factors affecting intestinal health in poultry. Poult Sci 87(10):2052–2063

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Hsu JC, Chiou PWS (1998) Effects of β-glucanase supplementation of barley diets on growth performance of broilers. Anim Feed Sci Technol 70(4):353–361

    Article  CAS  Google Scholar 

  • Yun CH, Estrada A, Van Kessel A, Park BC, Laarveld B (2003) β-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol 35(1):67–75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edison, L.K., Ragitha, V.M., Pradeep, N.S. (2022). Beta-Glucanases in Animal Nutrition. In: Pradeep, N., Edison, L.K. (eds) Microbial Beta Glucanases. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-6466-4_5

Download citation

Publish with us

Policies and ethics