Skip to main content

Structure and Classification of Beta-Glucanases

  • Chapter
  • First Online:
  • 236 Accesses

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

Abstract

Beta-glucanases are clustered under the family glycosyl hydrolase (GH). The assorted roles of beta-glucanases in nature are completely determined by the various chemical interactions and molecular structures. Therefore, sophisticated systems are essential for their industrial level production and processing. The clarification and understanding of the molecular structure of beta-glucanases benefit to recognize the molecular mechanism and cleavage pattern of a wide array of beta-glucan substrates. Modes of action of enzymes were scientifically scrutinized based on the sequence similarity, phylogeny studies, kinetics studies, mutagenesis, X-ray crystallography and molecular dynamics. Definitions of molecular structure and catalytic mechanism of beta-glucanase help to expand the glucanolytic research from basic understanding to high throughput biotechnological applications with the aid of genetic engineering and protein engineering technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe K, Nakajima M, Yamashita T, Matsunaga H, Kamisuki S, Nihira T, Takahashi Y, Sugimoto N, Miyanaga A et al (2017) Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 292(18):7487–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abou Hachem M, Nordberg Karlsson EN, Bartonek-Roxâ E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O (2000) Carbohydrate binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345(1):53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal PK (2006) Enzymes: an integrated view of structure, dynamics and function. Microb Cell Factories 5:2

    Article  Google Scholar 

  • Annamalai N, Rajeswari MV, Sivakumar N (2016) Cellobiohydrolases: role, mechanism, and recent developments. In: Gupta V (ed) Microbial enzymes in bioconversions of biomass. Biofuel and biorefinery technologies, vol 3. Springer, Cham, pp 29–35

    Google Scholar 

  • Ardèvol A, Rovira C (2015) Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J Am Chem Soc 137(24):7528–7547

    Article  PubMed  Google Scholar 

  • Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R (2017) Advances in molecular engineering of carbohydrate-binding modules. Proteins 85(9):1602–1617

    Article  CAS  PubMed  Google Scholar 

  • Baroroh U, Yusuf M, Rachman SD, Ishmayana S, Syamsunarno M, Levita J, Subroto T (2017) The importance of surface-binding site towards starch-Adsorptivity level in α-amylase: a review on structural point of view. Enzyme research 2017:4086845

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X et al (2010) The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys J 99(11):3773–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boraston AB, Kwan E, Chiu P, Warren AJ, Kilburn DG (2002) Recognition and hydrolysis of non-crystalline cellulose. J Biol Chem 278:6120–6127

    Article  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. En. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chesters CG, Bull AT (1963) The enzymatic degradation of laminarin. 2. The multicomponent nature of fungal laminarinases. Biochem J 86(1):31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codera V, Gilbert HJ, Faijes M, Planas A (2015) Carbohydrate-binding module assisting glycosynthase-catalysed polymerizations. Biochem J 470(1):15–22

    Article  PubMed  Google Scholar 

  • Datta S, Sapra R (2011) Cellulases and hemicellulases for biomass degradation: an introduction. In: Simmons B (ed) Chemical and biochemical catalysis for next generation biofuels. Royal Society of Chemistry, pp 115–135

    Chapter  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  CAS  PubMed  Google Scholar 

  • Din N, Gilkes NR, Tekant B, Miller RC, Warren RAJ, Kilburn DG (1991) Non–hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nat Biotechnol 9(11):1096–1099

    Article  CAS  Google Scholar 

  • Espinosa JF, Montero E, Vian A, Garcia JL, Dietrich H, Schmidt RR, Martín-Lomas M et al (1998) For an example where O- and C- glycosides bind in different conformations with respect to the intersaccharide torsions. J Am Chem Soc 120:1309–1318

    Article  CAS  Google Scholar 

  • Fägerstam LG, Göran Pettersson L, Åke Engström J (1984) The primary structure of a 1,4-,3-glucan cellobiohydrolase from the fungus Trichoderma reesei QM9414. FEBS Lett 167(2):309–315

    Article  Google Scholar 

  • Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH (2003) Lic16A of clostridium thermocellum, a non-cellulosomal, highly complex endo-b-1,3-glucanase bound to the outer cell surface. Microbiology (Reading) 149(4):1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Fukumori F, Kudo T, Narahashi Y, Horikoshi K (1986) Molecular cloning and nucleotide sequence of the alkaline cellulase gene from the alkalophilic bacillus sp. strain 1139. J Gen Microbiol 132(8):2329–2335

    CAS  PubMed  Google Scholar 

  • Fulop L, Ponyi T (2015) Classification of glycosyl hydrolases based on structural homology. Journal of Universal Science 2(1):1–9

    Article  Google Scholar 

  • Gilbert HJ, Hall J, Hazlewood GP, Ferreira LMA (1990) The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic Centre. Mol Microbiol 4(5):759–767

    Article  CAS  PubMed  Google Scholar 

  • Gilkes NR, Warren RAJ, Miller RC Jr, Kilburn DG (1988) Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 263(21):10401–10407

    Article  CAS  PubMed  Google Scholar 

  • Gough CL, Dow JM, Keen J, Henrissat B, Daniels MJ (1990) Nucleotide sequence of the gene encoding the major endoglucanase of Xanthomonas campestris pv. Campestris Gene 89(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan N, Yu J, Liu W, Chen R (2018) A high-yielding enzymatic process for production of bioactive β-1,3-glucan oligosaccharides with defined size. J Glycobiol 07(1):131

    Article  Google Scholar 

  • Guiseppi A, Cami B, Aymeric JL, Ball G, Creuzet N (1988) Homology between endoglucanase Z of Erwinia chrysanthemi and endoglucanases of Bacillus subtilis and alkalophilic bacillus. Mol Microbiol 2(1):159–164

    Article  CAS  PubMed  Google Scholar 

  • Heinzelman P, Komor R, Kanaan A, Romero P, Yu X, Mohler S, Snow C, Arnold F (2010) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23(11):871–880

    Article  CAS  PubMed  Google Scholar 

  • Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong TY, Cheng CW, Huang JW, Meng M (2002) Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate binding module that binds to 1,3-β-glucan. Microbiology 148:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Hong TY, Hsiao YY, Meng M, Li TT (2008) The 1.5 a structure of endo-1,3-beta-glucanase from Streptomyces sioyaensis: evolution of the active-site structure for 1,3-beta-glucan-binding specificity and hydrolysis. Acta Crystallogr D Biol Crystallogr 64(9):964–970

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Yang H, Zhang K, Liu C, Zou S, Zhang M (2014) Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World J Microbiol Biotechnol 30(11):2985–2993

    Article  CAS  PubMed  Google Scholar 

  • Jeng WY, Wang NC, Lin CT, Shyur LF, Wang AH (2011) Crystal structures of the laminarinase catalytic domain from Thermotoga maritima MSB8 in complex with inhibitors: essential residues for β-1,3- and β-1,4-glucan selection. J Biol Chem 286(52):45030–45040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Goto M, Jeong HJ, Jung KH, Kwon I, Furukawa K (1998) Functional analysis of a hybrid endoglucanase of bacterial origin having a cellulose binding domain from a fungal exoglucanase. Appl Biochem Biotechnol 75(2–3):193–204

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Luscombe NM, Swindells MB, Thornton JM (1996) Protein clefts in molecular recognition and function. Protein Sci 5(12):2438–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Arai T, Ibrahim D, Kosugi A, Prawitwong P, Lan D, Murata Y, Mori Y (2014) Purification and characterization of a thermostable laminarinase from Penicillium rolfsii c3-2(1) IBRL. Bioresources 9(1):1072–1084

    Article  Google Scholar 

  • Limon MC, Margolles-Clark E, Benítez T, Penttilä M (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGavin MJ, Forsberg CW, Crosby B, Bell AW, Dignard D, Thomas DY (1989) Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J Bacteriol 171(10):5587–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean BW, Boraston AB, Brouwer D, Sanaie N, Fyfe CA, Warren RA, Kilburn DG, Haynes CA (2002) Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem 277(52):50245–50254

    Article  CAS  PubMed  Google Scholar 

  • Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA, Prates JA, Firbank SJ, Lewis RJ, Grondin GG et al (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A 106(9):3065–3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai R, Horinouchi S, Beppu T (1988) Cloning and nucleotide sequence of a cellulase gene casA, from an alkalophilic Streptomyces strain. Gene 65(2):229–238

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Bignon C, Allouch J, Czjzek M, Darbon H, Watanabe T, Henrissat B (2001) Streptomyces matensis laminaripentose hydrolase is an ‘inverting’ beta-1,3-glucanase. FEBS Lett 499(1–2):187–190

    Article  CAS  PubMed  Google Scholar 

  • O’Neill GP, Goh SH, Warren RAJ, Kilburn DG, Miller RC Jr (1986) Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44(2–3):325–330

    Article  PubMed  Google Scholar 

  • Planas A (2000) Bacterial 1,3-1,4-beta-glucanases: structure, function and protein engineering. Biochim Biophys Acta 1543(2):361–382

    Article  CAS  PubMed  Google Scholar 

  • Qin HM, Miyakawa T, Inoue A, Nakamura A, Nishiyama R, Ojima T, Tanokura M (2017) Laminarinase from Flavobacterium sp. reveals the structural basis of thermostability and substrate specificity. Sci Rep 7(1):11425

    Article  PubMed  PubMed Central  Google Scholar 

  • Receveur V, Czjzek M, Schülein M, Panine P, Henrissat B (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem 277(43):40887–40892

    Article  CAS  PubMed  Google Scholar 

  • Ruiz DM, Turowski VR, Murakami MT (2016) Effects of the linker region on the structure and function of modular GH5 cellulases. Sci Rep 6:28504

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:461

    Google Scholar 

  • Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT (2012) Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 7(11):e48615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez MM, Pastor FI, Diaz P (2003) Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. A unique type of cellulase among Bacillales. Eur J Biochem 270(13):2913–2919

    Article  CAS  PubMed  Google Scholar 

  • Sathya TA, Khan M (2014) Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry. J Food Sci 79(11):R2149–R2156

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Yao G, Yang P, Li N, Luo H, Bai Y, Wang Y, Yao B (2010) Cloning, characterization, and antifungal activity of an endo-1,3-beta-D: -glucanase from Streptomyces sp. S27. Appl Microbiol Biotechnol 85(5):1483–1490

    Article  CAS  PubMed  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahlberg J, Divne C, Koivula A, Piens K, Claeyssens M, Teeri TT, Jones TA (1996) Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 264(2):337–349

    Article  CAS  PubMed  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and biology of 1,3-LGlucans: Bundoora. La Trobe University Press, Australia

    Google Scholar 

  • Suominen PL, Mäntylä AL, Karhunen T, Hakola S, Nevalainen H (1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241(5–6):523–530

    Article  CAS  PubMed  Google Scholar 

  • Teegardin KA, James S, Barabote RD (2017) Bioinformatic analysis of glycoside hydrolases in the proteomes of mesophilic and thermophilic Actinobacteria. MOJ Proteom Bioinformatics 5(3):75–81

    Google Scholar 

  • Ting CL, Makarov DE, Wang ZG (2009) A kinetic model for the enzymatic action of cellulase. J Phys Chem B 113(14):4970–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170(3):575–581

    Article  CAS  PubMed  Google Scholar 

  • Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett 204(2):223–227

    Article  Google Scholar 

  • White WB, Bird HR, Sunde ML, Marlett JA, Prentice NA, Burger WC (1983) Viscosity of β-D-glucan as a factor in the enzymatic improvement of barley for chicks. Poult Sci 62(5):853–862

    Article  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • Wootton JC, Drummond MH (1989) The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng 2(7):535–543

    Article  CAS  PubMed  Google Scholar 

  • Yablonsky MD, Bartley TKO (1988) Characterization and cloning of the cellulase complex of Microbispora bispora. Elliston, S. K. Kahrs, Z. P. Shalita, and D. E FEMS Symp: Eveleigh 43:249–266

    CAS  Google Scholar 

  • Yague E, Béguin P, Aubert JP (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of clostridium thermocellum. Gene 89(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang ST, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New York, pp 131–146

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edison, L.K., Menon, K., Pradeep, N.S. (2022). Structure and Classification of Beta-Glucanases. In: Pradeep, N., Edison, L.K. (eds) Microbial Beta Glucanases. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-6466-4_2

Download citation

Publish with us

Policies and ethics